• 제목/요약/키워드: wind turbine control

검색결과 470건 처리시간 0.026초

Development of Wind Turbine Simulation System Based on IEC 61400-25 Standard

  • Lee, Jae-Kyung;Kim, Dong-Wook;Kim, Seok-Tae;Chae, Chang-Hun;Park, Joon-Young
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권4호
    • /
    • pp.349-359
    • /
    • 2019
  • This paper introduces a wind turbine simulation system based on the IEC 61400-25 standard to simulate different kinds of wind turbines. A unified communication protocol was required for monitoring and control of wind turbines, because manufacturers had used their own protocols for their turbines. As a result of such an effort, the international standard IEC 61400-25 was established. To implement the schema of IEC 61400-25, the IEC61850 SCL was modified and applied to the simulation system, which enabled the system to be compatible with heterogeneous wind turbine information models. The developed simulation system can be used for interoperability tests with a new type of wind turbine information model.

피치 제어를 이용한 계통연계 풍력발전 시스템의 최대출력 제어 (The control of maximum power output for a grid-connected wind turbine system by using pitch control method)

  • 유행수;노경수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.159-161
    • /
    • 2001
  • This study is for the pitch control of blade, used in most horizontal-axis wind turbine systems, to sustain the maximum power output supplied to grid. The control of a blade can be divided into a stall regulation and a pitch control methods. The stall regulation method using an aerodynamic stall is simple and cheap, but it suffers from fluctuation of the resulting power. Pitch control method is mechanically and mathematically complicated, but the control performance is better than that of the stall regulation method. In this paper 2.5MW MOD-2 wind turbine system is adopted to be controlled by a pitch controller with PI method. The simulation performed by MA TLAB will show the variation of frequency, generator output, and pitch angle.

  • PDF

PSCAD/EMTDC를 이용한 풍력발전시스템의 새로운 시뮬레이션 방법에 관한 연구 (Study on a Noval Simulation Method of Wind Power Generation System Using PSCAD/EMTDC)

  • 한상근;박민원;유인근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권6호
    • /
    • pp.307-315
    • /
    • 2003
  • This paper proposes a novel simulation method of WPGS (Wind Power Generation System). The rotation speed control method of turbine under variable wind speed using the pitch control is proposed. Moreover, when wind speed exceeds the cut-out wind speed, the turbine will be stopped by controlling pitch angle to 90$^{\circ}$, otherwise it will be controlled to steady-state operation. For the purpose of effective simulation, the SWRW (Simulation method for WPGS using Real Weather condition) is used for the utility interactive WPGS simulation in this paper, in which those of three topics for the WPGS simulation: user-friendly method, applicability to grid-connection and the utilization of the real weather conditions, are satisfied. It is impossible to consider the real weather conditions in the WPGS simulation using the EMTP type of simulators and PSPICE, etc. External parameter of the real weather conditions is necessary to ensure the simulation accuracy. The simulation of the WPGS using the real weather conditions including components modeling of wind turbine system is achieved by introducing the interface method of a non-linear external parameter and FORTRAN using PSCAD/EMTDC in this paper. The simulation of long-term, short-term, over cut-out and under cut-out wind speeds will be peformed by the proposed simulation method effectively. The efficiency of wind power generator, power converter and flow of energy are analyzed by wind speed of the long-term simulation. The generator output and current supplied into utility can be obtained by the short-term simulation. Finally, transient-state of the WPGS can be analyzed by the simulation results of over cut-out and under cut-out wind speeds, respectively.

풍력터빈 블레이드 주위 흐름의 유동특성에 대한 실험적 분석 (Experimental Analysis of Flow Characteristics around Wind-Turbine Blades)

  • 이정엽;이상준
    • 한국가시화정보학회지
    • /
    • 제7권2호
    • /
    • pp.64-71
    • /
    • 2010
  • The flow and noise characteristics of wake behind wind-turbine blades have been investigated experimentally using a two-frame particle image velocimetry (PIV) technique. Experiments were carried out in a POSTECH subsonic large wind-tunnel ($1.8^W{\times}1.5^H{\times}4.3^L\;m^3$) with KBP-750D (3-blade type) wind-turbine model at a freestream velocity of $U_o\;=\;15\;m/s$ and a tip speed ratio $\lambda\;=\;6.14$ (2933 rpm). The wind-turbine blades are connected to an AC servo motor, brake, encoder and torque meter to control the rotational speed and to extract a synchronization signal for PIV measurements. The wake flow was measured at four azimuth angles ($\phi\;=\;0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$) of the wind-turbine blade. The dominant flow structure of the wake is large-scale tip vortices. The turbulent statistics such as turbulent intensity are weakened as the flow goes downstream due to turbulent dissipation. The dominant peak frequency of the noise signal is identical to the rotation frequency of blades. The noise seems to be mainly induced by the tip vortices.

풍력발전용 기어리스 이중여자 유도 발전기 (Gearless Doubly-fed Induction Generator for Wind Power Generation)

  • 박태식;문채주;김성환
    • 전기전자학회논문지
    • /
    • 제21권1호
    • /
    • pp.81-84
    • /
    • 2017
  • 본 논문에서는 대형 풍력발전시스템에서 신뢰성 및 품질에 가장 큰 영향을 주는 기계적인 부품에 있어서 증속기어를 제거함으로서 잠재적인 고장 및 전력품질 저하의 문제점을 해결하고자 한다. 제안된 방식은 회전가능한 고정자와 슬립링을 적용하고, 고정자를 회전시킴으로써 기존의 증속기를 갖는 풍력발전시스템과 유사한 발전특성을 확보하고자 한다. 또한, 제안된 방식의 동작과 성능을 확인하기 위해 PSIM 시뮬레이션 패키지를 사용하여 시뮬레이션을 수행하여 성능을 검증하였다.

Maximum Power Tracking Control for parallel-operated DFIG Based on Fuzzy-PID Controller

  • Gao, Yang;Ai, Qian
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2268-2277
    • /
    • 2017
  • As constantly increasing wind power penetrates power grid, wind power plants (WPPs) are exerting a direct influence on the traditional power system. Most of WPPs are using variable speed constant frequency (VSCF) wind turbines equipped with doubly fed induction generators (DFIGs) due to their high efficiency over other wind turbine generators (WTGs). Therefore, the analysis of DFIG has attracted considerable attention. Precisely measuring optimum reference speed is basis of utilized maximum wind power in electric power generation. If the measurement of wind speed can be easily taken, the reference of rotation speed can be easily calculated by known system's parameters. However, considering the varying wind speed at different locations of blade, the turbulence and tower shadow also increase the difficulty of its measurement. The aim of this study is to design fuzzy controllers to replace the wind speedometer to track the optimum generator speed based on the errors of generator output power and rotation speed in varying wind speed. Besides, this paper proposes the fuzzy adaptive PID control to replace traditional PID control under rated wind speed in variable-pitch wind turbine, which can detect and analyze important aspects, such as unforeseeable conditions, parameters delay and interference in the control process, and conducts online optimal adjustment of PID parameters to fulfill the requirement of variable pitch control system.

An Improved Control Method for a DFIG in a Wind Turbine under an Unbalanced Grid Voltage Condition

  • Lee, Sol-Bin;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.614-622
    • /
    • 2010
  • This paper presents a control method, which reduces the pulsating torque and DC voltage problems of a doubly fed induction generator (DFIG)-based wind turbine system. To reduce the torque and power ripple, a current control scheme consisting of a proportional integral (PI) controller is presented in a positive synchronously rotating reference frame, which is capable of providing precise current control for a rotor-side converter with separated positive and negative components. The power theory can reduce the oscillation of the DC-link voltage in the grid-side converter. In this paper, the generator model is examined, and simulation results are obtained with a 3 kW DFIG-based wind turbine system to verify the proposed control strategy.

혼합형 유전 알고리즘을 이용한 풍력발전기용 블레이드 최적설계 및 피치제어에 관한 연구 (A Study on the Wind Turbine Blade Optimization and Pitch Control Using the Hybrid Genetic Algorithm)

  • 강신재;김기완;유기완;송기정
    • 한국항공우주학회지
    • /
    • 제30권6호
    • /
    • pp.7-13
    • /
    • 2002
  • 본 논문에서는 새로운 형태의 혼합형 유전 알고리즘을 제안하고 성능을 검증한 후 30kW 피치제어 가변 풍력발전시스템의 블레이드 설계와 피치제어 최적화에 적용하여 주어진 Weibull 분포함수에서 동력을 최대화하는 최적의 블레이드 시위 및 비틀림각의 분포와 작동범위내에서 동력을 일정하게 유지하기 위한 최적의 피치각을 결정하였다.

10kW 풍력발전기의 동작특성 분석을 위한 토크 시뮬레이터 개발 (Development of Torque simulator for the performance analysis of the 10kW wind turbine system)

  • 김세윤;김성호;이종희;문진영
    • 한국지능시스템학회논문지
    • /
    • 제24권6호
    • /
    • pp.579-585
    • /
    • 2014
  • 10kW 급의 소형 풍력 발전 시스템은 언덕이나 공원, 도시와 같은 협소한 지역에 유연하게 설치될 수 있다는 장점으로 인해 신재생에너지 분야에서 지속적인 연구와 개발이 이루어지고 있다. 이러한 풍력발전 시스템의 설계시에는 풍속변화에 따른 다양한 형태의 전력 제어장치의 체계적인 성능 분석이 요구된다. 그러나 실물 크기의 풍력발전기에 개발된 전력 제어장치의 직접 적용은 어려운 실정이며 따라서 실내에서 풍속의 변화에 따른 블레이드의 공력토크를 모사할 수 있는 토크 시뮬레이터를 사용하여 설계된 전력 제어장치의 성능을 분석하는 것이 바람직하다. 이에 본 연구에서는 3상 토크제어용 인버터, 3상 유도전동기, 벨트 감속기 및 PMSG로 구성되는 10kW급 풍력발전 토크 시뮬레이터를 개발하고자 한다.

풍력터빈시험을 위한 실증시험장 개발에 관한 연구 (A Study on Development of Test Site for Wind Turbine Prototype Test)

  • 문채주;장영학;소순열;김태곤;김영곤;정문선;정승원
    • 한국태양에너지학회 논문집
    • /
    • 제33권2호
    • /
    • pp.101-107
    • /
    • 2013
  • It is evident that in the wind energy business as an economic activity there is a close relationship between the wind speed and the revenues. The wind turbine test facility for wind turbine accreditation is intended to be used by the industry for testing of both main components and systems. This paper suggest the wind test site for certification of prototype wind turbine with international regulations. The test site has an environmental permit for wind turbines with a maximum hub height of 120m and a rotor diameter up to 120m, and can accommodate prototypes with installed electrical powers up to 5MW each. A wind turbine manufacturer can lease the location for a period of type certification. And also researchers are the development of new methods for measuring the influence, performance and durability of the components, a mathematical and numerical modelling of component responses by using the site.