• Title/Summary/Keyword: wind tunnel measurements

Search Result 198, Processing Time 0.031 seconds

Centrifugal Blower with High Inlet Resistance (고 흡입저항을 가진 원심 송풍기)

  • Kim, Jae-Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.15-22
    • /
    • 2003
  • Comprehensive study on a centrifugal blower for air-purifier involving a few physical filters for percolation process has been accomplished for an optimal design of the air handling system. The filtering media causes a flow resistance for induced flows by a rotating impeller. The present methodology is to adopt PIV system for velocity measurements and wind tunnel connected with an anechoic chamber for total performance test of the blower. Trial prototypes for the blades of a rotor and casing are presented for satisfaction of both flow rate and noise level set by design objectives. Tapered blades with a special casing for a fan show good performance data. The results of velocity fields also explain the reason of improvements of the blower performance.

Theoretical and Experimental Study on Airfoil Singing (날개 명음소음에 관한 이론 및 실험 연구)

  • Ahn, Byoung-Kwon;Kim, Jong-Hyun;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.476-476
    • /
    • 2009
  • Periodic vortex separations generate periodic vertical forces acting on a trailing edge of an airfoil. When a natural frequency of the trailing edge of the airfoil is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appear, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, a theoretical model is proposed and applied for modeling an airfoil singing. Results are compared with experimental measurements which are carried out in an anechoic wind tunnel.

  • PDF

Visualization of Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 익형 유동의 가시화)

  • Jang Ho-Keun;Kwon Jin-Kyung;Kim Byung-Ji;Kwon Soon-Bum;Kim Myung-Su
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.68-71
    • /
    • 2004
  • The experiments for NACA airfoils are conducted as the preliminary study for the aerodynamic characteristics of the transonic airfoil flow in the shock tube. The test section configurations were designed to use shock tube as simple and less costly experimental facility generating transonic flow at relatively high Reynolds numbers. Experiments at hot gas Mach numbers of 0.80, 0.82 and 0.84, Reynolds numbers of about $1.2\times10^6$ on airfoil chord length and angle of attack of $0^{\circ}\;and\;2^{\circ}$ were carried out by means of shadowgraph visualization method and static pressure measurements. Visualization results were compared with the corresponding results from the conventional transonic wind tunnel tests. The results of study showed that present shock tube facility is useful to study the proper performance characteristics in transonic Mach number range.

  • PDF

Flows through Evaporator for Cooling (증발기 냉각 팬에 의한 유동)

  • Kim Jae Won;Kim Nam Wook
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.499-502
    • /
    • 2002
  • The present study has been carried out for understanding of flows over an evaporator in cooling system of water. Main emphasis is to decide the flow patterns in order to enhance the flow rate with low noise level. Two cases aye examined for comparison of flows; one is blowing system and the other is suction style with respect to Inn system. Present methodology for this work is PIV (Particle Image Velocimetry) techniques and Rot-wire anemometer for velocity measurements and wind tunnel for performance of the present fan. Consequently, it is found that flows passing evaporator and other components for cooling are more effective than the suction flows. Flow details with performance of fan system are also presented for proper explanation of the conclusion.

  • PDF

Experimental examination of noise generation from exterior of the HSR-350x (한국형고속열차의 외부 발생 소음특성 규명을 위한 시험)

  • Choi, Sung-Hoon;Park, Jun-Hong;Kim, Young-Key;Koh, Hyo-In
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.85-90
    • /
    • 2007
  • Aerodynamically generated noise is significant when the train speed exceeds 250km/h. Experiments were performed in order to investigate the characteristics of aerodynamic noise sources generated from exterior of the HSR-350x, especially from the inter-coach spacing. Measurements of both the inside and outside of the cabin are carried out to investigate the characteristics of the noise. Effect of the size of the gap has been investigated through an wind tunnel test and it has been found that the low frequency noise is strongly dependent on the size of gap. Also performed is an array measurement to locate different noise sources from the high-speed train. Spectral characteristics of exterior noise sources have been examined through these experiments.

  • PDF

Theoretical and Experimental Study on Airfoil Singing (날개 명음소음에 관한 이론 및 실험 연구)

  • Ahn, Byoung-Kwon;Lee, Jong-Hyun;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 2010
  • Periodic vortex separations generate periodic vertical forces acting on a trailing edge of an airfoil. When a natural frequency of the trailing edge of the airfoil is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appears, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, a theoretical model is proposed and applied for modeling an airfoil singing. Results are compared with experimental measurements which are carried out in an anechoic wind tunnel.

Vortical Flows over a LEX-Delta Wing at High Angles of Attack

  • Lee, Young-Ki;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2273-2283
    • /
    • 2004
  • The vortical flows over sharp-edged delta wings with and without a leading edge extension have been investigated using a computational method. Three-dimensional compressible Reynolds-averaged Navier-Stokes equations are solved to provide an understanding of the effects of the angle of attack and the angle of yaw on the development and interaction of vortices and the aerodynamic characteristics of the delta wing at a freestream velocity of 20 m/s. The present computations provide qualitatively reasonable predictions of vortical flow characteristics, compared with past wind tunnel measurements. In the presence of a leading edge extension, a significant change in the suction pressure peak in the chordwise direction is much reduced at a given angle of attack. The leading edge extension can also stabilize the wing vortex on the windward side at angles of yaw, which dominates the vortical flows over yawed delta wings.

Analysis of Field Noise from High Speed Train Using Dedopplerization (도플러 보정을 통한 고속열차 현장 측정 소음 분석)

  • Lee, Yong Woo;Lee, Duck Joo;Kwon, Hyeok Bin;Yun, Su Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.431-437
    • /
    • 2013
  • Measured acoustic signal from operating high speed train contains frequency change called doppler shift due to its motion. To avoid this doppler shift wind tunnel test is required. But scaledown of model can cause change of source characteristics. And measurements using some part of train cannot reproduce real flow condition. The best way to recognize real noise source characteristics is measurement from operating high speed train but doppler shift makes it hard. So, we developed simple dedopplerization technique for one microphone and applied to field test data of high speed train. Through this, we could capture real frequency of noise from operating high speed train.

Improvement of Lift Dump on a Fighter-Type Wing at Approach Condition

  • Hwang, Soo-Jung;Lee, Il-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.33-45
    • /
    • 2005
  • The 1/9-scale model of a fighter-type configuration was tested in the Micro-Craft 8ft ${\times}$ 12ft wind tunnel facility. An abrupt lift dump was found at a certain range of angle of attack under the pre-scheduled approach configuration. To avoid a probable unsatisfactory flight behavior due to the lift dump, various aerodynamic devices were suggested. Extensive tests applying the cutoff leading edge flaps, boundary layer fences, saw tooth and vortex generators were performed with flow visualization as well as force and moment measurements. Test results showed that the origin of the lift dump was caused by the secondary boundary layer flow separation generated from the strong interaction between wing and flap. Various solutions for avoiding the unfavorable feature were suggested with the merits and demerits.

A Study of Frost Formation on Different Hydrophilic Surfaces (다른 친수성능을 가진 두 표면에서의 착상에 관한 연구)

  • 김철환;신종민;하삼철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.519-524
    • /
    • 2002
  • An experimental study has been conducted to investigate the effects of surface energy on frost formation. Test samples with two different surfaces are installed in a wind tunnel and exposed to a humid airflow. Dynamic contact angles (DCA) for these surfaces are $23^{\circ}\;and\;88^{\circ}$, respectively. The thickness and the mass of frost layer are measured and used to calculate the frost density while frost formation is visualized simultaneously with their measurements. Results show that frost density increases as time increases at specific test conditions. The air Reynolds number, the airflow humidity and the cold plate temperature are maintained at 12,000, 0.0042 kg/kg and $-21^{\circ}C$, respectively. The surface with a lower DCA shows a higher frost density during two-hour test, but no differences in the frost density have been found after two hours of frost generation. Empirical correlations for thickness, mass and density are assumed to be the functions of the test time and DCA.