• Title/Summary/Keyword: wind speeds

Search Result 512, Processing Time 0.031 seconds

Some physical characteristics of Gamak Bay observed in October and November of year 2004 (2004년 10월 및 11월에 관측된 가막만의 물리환경)

  • Lee, Moon-Ock;Kim, Byeong-Kuk;Park, Sung-Jin;Kim, Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.165-173
    • /
    • 2005
  • Field observations have been conducted to investigate the physical environment around oyster farms in Gamak Bay. Tidal waves near the two channels at the northeast and south of the bay had almost the same amplitudes and phases. Water temperature responded sensibly to the tides, rising at high water and falling at low water, except for the northwest region. The currents more regularly varied in accordance with a tidal period as long as they are at the faster-flowing region. A considerable flow has been found near the seabed of the northwest of the bay, normally known to be a stagnant area, and also the flow was opposite to the surface flow. Average moving speeds and directions of the flow at each station coincided well with patterns of the residual currents computed by Lee ef al. [2004], except for the northwest region. The discrepancy for the northwest region is not clear but it may have resulted from the facts that the computed flow pattern represents only the case of spring tide and in addition, a northwesterly wind prevailed all the observation time.

  • PDF

Relationship between Tropical Cyclone Intensity and Physical Parameters Derived from TRMM TMI Data Sets (TRMM TMI 관측과 태풍 강도와의 관련성)

  • Byon, Jae-Young
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.359-367
    • /
    • 2008
  • TRMM TMI data were used to investigate a relationship between physical parameters from microwave sensor and typhoon intensities from June to September, 2004. Several data such as 85GHz brightness temperature (TB), polarization corrected temperature (PCT), precipitable water, ice content, rain rate, and latent heat release retrieved from the TMI observation were correlated to the maximum wind speeds in the best-track database by RSMC-Tokyo. Correlation coefficient between TB and typhoon intensity was -0.2 - -0.4 with a maximum value in the 2.5 degree radius circle from the center of tropical cyclone. The value of correlation between in precipitable water, rain, latent heat, and typhoon intensity is in the range of 0.2-0.4. Correlation analysis with respect to storm intensity showed that maximum correlation is observed at 1.0-1.5 degree radius circle from the center of tropical cyclone in the initial stage of tropical cyclone, while maximum correlation is shown in 0.5 degree radius in typhoon stage. Correlation coefficient was used to produce regressed intensities and adopted for typhoon Rusa (2002) and Maemi (2003). Multiple regression with 85GHz TB and precipitable water was found to provide an improved typhoon intensity when taking into account the storm size. The results indicate that it may be possible to use TB and precipitable water from satellite observation as a predictor to estimate the intensity of a tropical cyclone.

Study on the Establishment of the Separation Distance between Anchored Ships in Jinhae Bay Typhoon Refuge (진해만 태풍 피항지 정박 선박간 이격거리 설정에 관한 연구)

  • Won-Sik Kang;Ji-Yoon Kim;Dae-Won Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.338-347
    • /
    • 2023
  • Jinhae Bay, characterized by frequent runaway ships and strong winds during typhoon attacks, poses a high risk of maritime accidents such as ship collisions and groundings. This study aims to determine a safe separation distance between ships in the Jinhae Bay anchorage, considering the unique environmental characteristics of the Korean sea area. Analysis revealed that an average of 100-200 ships anchor in the typhoon avoidance area in Jinhae Bay during typhoon attacks, with approximately 70% of ships experiencing anchor dragging owing to strong external forces exceeding 25 m/s wind speeds. In this study, we analyzed and presented the separation distances between ships during anchoring operations based on domestic and international design standards, separation distances between ships used as actual typhoon shelters in Jinhae Bay, and appropriate safe distances for ships drifting under strong external forces. The analysis indicated that considering the minimum criteria based on the design standards and emergency response time, a minimum safe distance of approximately 400-900 m was required. In cases where ample space was available, the separation distance was recommended to be set between 700 to 900 m. The findings of this study are anticipated to contribute to the development of guidelines for establishing safe separation distances between ships seeking refuge from typhoons in Jinhae Bay in the future.

Overview of the Korean Marine Industry and VPP Analysis of a 28ft Sailing Yacht (대한민국의 해양 레저 시장 및 28ft급 세일요트의 VPP 성능해석 연구)

  • Yeongmin Park;Hoyun Jang;Minsu Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.365-372
    • /
    • 2024
  • The South Korean marine industry is emerging as a significant market, driven by the growing popularity of various water leisure activities, including sailing. This trend suggests a rising demand for sailing yachts. Consequently, since 2022, the design and development of a 28ft sailing yacht have been ongoing, supported by the government and the Ministry of Oceans and Fisheries, to promote yachting culture in South Korea. The Velocity Prediction Program (VPP) analysis was conducted using WinDesign during the preliminary design stage to evaluate performance and determine design parameters. The hydrodynamic model used for this vessel is based on regression methods developed from years of experience in naval architecture and yacht research at the Wolfson Unit, providing reliable estimates for most modern yachts. However, owing to the lack of specific hydrodynamic data from towing tank tests or CFD numerical analysis, verification of the hydrodynamic model has faced some challenges. Additionally, an incomplete weight estimate resulted in variable VCG values, potentially affecting stability and overall performance. The optimal boat speed for this vessel was determined at true wind speeds (TWS) of 4, 8, 12, 16, and 20 knots, using both the jib (up to 120° TWA) and the spinnaker (from 80° TWA). The optimized speed of the yacht was found to be comparable to that of international similar-class yachts.

Validation of Satellite SMAP Sea Surface Salinity using Ieodo Ocean Research Station Data (이어도 해양과학기지 자료를 활용한 SMAP 인공위성 염분 검증)

  • Park, Jae-Jin;Park, Kyung-Ae;Kim, Hee-Young;Lee, Eunil;Byun, Do-Seong;Jeong, Kwang-Yeong
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.469-477
    • /
    • 2020
  • Salinity is not only an important variable that determines the density of the ocean but also one of the main parameters representing the global water cycle. Ocean salinity observations have been mainly conducted using ships, Argo floats, and buoys. Since the first satellite salinity was launched in 2009, it is also possible to observe sea surface salinity in the global ocean using satellite salinity data. However, the satellite salinity data contain various errors, it is necessary to validate its accuracy before applying it as research data. In this study, the salinity accuracy between the Soil Moisture Active Passive (SMAP) satellite salinity data and the in-situ salinity data provided by the Ieodo ocean research station was evaluated, and the error characteristics were analyzed from April 2015 to August 2020. As a result, a total of 314 match-up points were produced, and the root mean square error (RMSE) and mean bias of salinity were 1.79 and 0.91 psu, respectively. Overall, the satellite salinity was overestimated compare to the in-situ salinity. Satellite salinity is dependent on various marine environmental factors such as season, sea surface temperature (SST), and wind speed. In summer, the difference between the satellite salinity and the in-situ salinity was less than 0.18 psu. This means that the accuracy of satellite salinity increases at high SST rather than at low SST. This accuracy was affected by the sensitivity of the sensor. Likewise, the error was reduced at wind speeds greater than 5 m s-1. This study suggests that satellite-derived salinity data should be used in coastal areas for limited use by checking if they are suitable for specific research purposes.

Calibration of Hargreaves Equation Coefficient for Estimating Reference Evapotranspiration in Korea (우리나라 기준증발산량 추정을 위한 Hargreaves 공식의 계수 보정)

  • Hwang, Seon-ah;Han, Kyung-hwa;Zhang, Yong-seon;Cho, Hee-rae;Ok, Jung-hun;Kim, Dong-Jin;Kim, Gi-sun;Jung, Kang-ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.238-249
    • /
    • 2019
  • The evapotranspiration is estimated based on weather factors such as temperature, wind speed and humidity, and the Hargreaves equation is a simple equation for calculating evapotranspiration using temperature data. However, the Hargreaves equation tends to be underestimated in areas with wind speeds above 3 m s-1 and overestimated in areas with high relative humidity. The study was conducted to determine Hargreaves equation coefficient in 82 regions in Korea by comparing evapotranspiration determined by modified Hargreaves equation and the Penman-Monteith equation for the time period of 2008~2018. The modified Hargreaves coefficients for 50 inland areas were estimated to be 0.00173~0.00232(average 0.00196), which is similar to or lower than the default value 0.0023. On the other hand, there are 32 coastal areas, and the modified coefficients ranged from 0.00185 to 0.00303(average 0.00234). The east coastal area was estimated to be similar to or higher than the default value, while the west and south coastal areas showed large deviations by area. As results of estimating the evapotranspiration by the modified Hargreaves coefficient, root mean square error(RMSE) is reduced from 0.634~1.394(average 0.857) to 0.466~1.328(average 0.701), and Nash-Sutcliffe Coefficient(NSC) increased from -0.159~0.837(average 0.647) to -0.053~0.910(average 0.755) compared with original Hargreaves equation. Therefore, we confirmed that the Hargreaves equation can be overestimated or underestimated compared to the Penman-Monteith equation, and expected that it will be able to calculate the high accuracy evapotranspiration using the modified Hargreaves equation. This study will contribute to water resources planning, irrigation schedule, and environmental management.

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part II - Effects of Road Emission (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part II - 도로 배출 영향)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1653-1667
    • /
    • 2020
  • In this study, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. We investigated the characteristics of fine particulate matter (PM2.5) distributions in a building-congested district. To analyze the effects of road emission on the PM2.5 concentrations, we calculated road emissions based on the monthly, daily, and hourly emission factors and the total amount of PM2.5 emissions established from the Clean Air Policy Support System (CAPSS) of the Ministry of Environment. We validated the simulated PM2.5 concentrations against those measured at the PKNU-AQ Sensor stations. In the cases of no road emission, the LDAPS-CFD model underestimated the PM2.5 concentrations measured at the PKNU-AQ Sensor stations. The LDAPS-CFD model improved the PM2.5 concentration predictions by considering road emission. At 07 and 19 LST on 22 June 2020, the southerly wind was dominant at the target area. The PM2.5 distribution at 07 LST were similar to that at 19 LST. The simulated PM2.5 concentrations were significantly affected by the road emissions at the roadside but not significantly at the building roof. In the road-emission case, the PM2.5 concentration was high at the north (wind speeds were weak) and west roads (a long street canyon). The PM2.5 concentration was low in the east road where the building density was relatively low.

Influence of Spring Warming in the Arctic-East Asia Region on the Arctic Oscillation and Dust Days in Korea Attributed to Dust Storms (북극-동아시아 지역의 봄철 온난화가 북극 진동-한국의 황사 사례일의 종관 기상에 미치는 영향 분석)

  • Ji-Sun Kim;Jae-Hee Cho;Hak-Sung Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.121-135
    • /
    • 2024
  • This study examined the influence of near-surface atmospheric warming in the Arctic-East Asia region during spring (March-May) from 1991 to 2020 on the synoptic-scale meteorology of dust storm-induced dust days in Seoul, Korea, in response to the Arctic Oscillation. Increased springtime warming in the Arctic-East Asia region correlated with a reduction of six days in the occurrence of dust storm-induced dust days in Seoul, Korea, along with a decline in the intensity of these days by -1.6 ㎍ m-3yr-1 in PM10 mass concentration. The declining number of dust storm-induced dust days in Korea during the 2010s was the result of synoptic-scale meteorological analysis, which showed increased high-pressure activity as indicated by the negative potential vorticity unit. Moreover, a distinct pattern emerged in the distribution of dust storm-induced dust days in Korea based on the Arctic Oscillation Index (AOI), showing an increase in negative AOI and a decrease in positive AOI. Although the northward shift of the polar jet weakened the southerly low-pressure system activity over Mongolia and northern China, a reinforced high-pressure system formed over the Chinese continent during dust-storm-induced dust days with a negative AOI. This resulted in both a decrease in the frequency of dust-storm-induced dust days and reduction in wind speeds, facilitating their transport from source regions to Korea. Conversely, on days with positive AOIs, an extensive warm and stagnant high-pressure system dominated mainland China, accompanied by further cooling of the northern segment of the polar jet. A notable decline in wind speed in the lower troposphere across the Mongolia-northern China-Korea region diminished the occurrence of dust storm-induced dust days and also weakened their long-range transport.

Spatial Distribution of Urban Heat and Pollution Islands using Remote Sensing and Private Automated Meteorological Observation System Data -Focused on Busan Metropolitan City, Korea- (위성영상과 민간자동관측시스템 자료를 활용한 도시열섬과 도시오염섬의 공간 분포 특성 - 부산광역시를 대상으로 -)

  • HWANG, Hee-Soo;KANG, Jung Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.100-119
    • /
    • 2020
  • During recent years, the heat environment and particulate matter (PM10) have become serious environmental problems, as increases in heat waves due to rising global temperature interact with weakening atmospheric wind speeds. There exist urban heat islands and urban pollution islands with higher temperatures and air pollution concentrations than other areas. However, few studies have examined these issues together because of a lack of micro-scale data, which can be constructed from spatial data. Today, with the help of satellite images and big data collected by private telecommunication companies, detailed spatial distribution analyses are possible. Therefore, this study aimed to examine the spatial distribution patterns of urban heat islands and urban pollution islands within Busan Metropolitan City and to compare the distributions of the two phenomena. In this study, the land surface temperature of Landsat 8 satellite images, air temperature and particulate matter concentration data derived from a private automated meteorological observation system were gridded in 30m × 30m units, and spatial analysis was performed. Analysis showed that simultaneous zones of urban heat islands and urban pollution islands included some vulnerable residential areas and industrial areas. The political migration areas such as Seo-dong and Bansong-dong, representative vulnerable residential areas in Busan, were included in the co-occurring areas. The areas have a high density of buildings and poor ventilation, most of whose residents are vulnerable to heat waves and air pollution; thus, these areas must be considered first when establishing related policies. In the industrial areas included in the co-occurring areas, concrete or asphalt concrete-based impervious surfaces accounted for an absolute majority, and not only was the proportion of vegetation insufficient, there was also considerable vehicular traffic. A hot-spot analysis examining the reliability of the analysis confirmed that more than 99.96% of the regions corresponded to hot-spot areas at a 99% confidence level.

A Study on Cold Water Damage to Marine Culturing Farms at Guryongpo in the Southwestern Part of the East Sea (경북 구룡포 해역에서의 냉수 발생과 어장 피해)

  • Lee, Yong-Hwa;Shim, JeongHee;Choi, Yang-ho;Kim, Sang-Woo;Shim, Jeong-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.731-737
    • /
    • 2016
  • To understand the characteristics and strength of the cold water that has caused damage to marine-culturing farms around Guryongpo, in the southwestern part of Korea, surface and water column temperatures were collected from temperature loggers deployed at a sea squirt farm during August-November 2007 and from a Real-time Information System for Aquaculture environment operated by NIFS (National Institute of Fisheries Science) during July-August 2015 and 2016. During the study period, surface temperature at Guryongpo decreased sharply when south/southwestern winds prevailed (the 18-26th of August and 20-22nd of September 2007 and the 13-15th of July 2015) as a result of upwelling. However, the deep-water (20-30m) temperature increased during periods of strong north/northeasterly winds (the 5-7th and 16-18th of September 2007) as a result of downwelling. Among the cold water events that occurred at Guryongpo, the mass death of cultured fish followed strong cold water events (surface temperatures below $10^{\circ}C$) that were caused by more than two days of successive south/southeastern winds with maximum speeds higher than 5 m/s. A Cold Water Index (CWI) was defined and calculated using maximum wind speed and direction as measured daily at Pohang Meteorological Observatory. When the average CWI over two days ($CWI_{2d}$) was higher than 100, mass fish mortality occurred. The four-day average CWI ($CWI_{4d}$) showed a high negative correlation with surface temperature from July-August in the Guryongpo area ($R^2=0.5$), suggesting that CWI is a good index for predicting strong cold water events and massive mortality. In October 2007, the sea temperature at a depth of 30 m showed a high fluctuation that ranged from $7-23^{\circ}C$, with frequency and spectrum coinciding with tidal levels at Ulsan, affected by the North Korean Cold Current. If temperature variations at the depth of fish cages also regularly fluctuate within this range, damage may be caused to the Guryongpo fish industry. More studies are needed to focus on this phenomenon.