DOI QR코드

DOI QR Code

Influence of Spring Warming in the Arctic-East Asia Region on the Arctic Oscillation and Dust Days in Korea Attributed to Dust Storms

북극-동아시아 지역의 봄철 온난화가 북극 진동-한국의 황사 사례일의 종관 기상에 미치는 영향 분석

  • Ji-Sun Kim (Department of Earth Science Education, Korean National University of Education) ;
  • Jae-Hee Cho (Department of Environmental Education, Kongju National University) ;
  • Hak-Sung Kim (Department of Earth Science Education, Korean National University of Education)
  • 김지선 (한국교원대학교 지구과학교육과) ;
  • 조재희 (공주대학교 환경교육과) ;
  • 김학성 (한국교원대학교 지구과학교육과)
  • Received : 2024.04.10
  • Accepted : 2024.04.26
  • Published : 2024.04.30

Abstract

This study examined the influence of near-surface atmospheric warming in the Arctic-East Asia region during spring (March-May) from 1991 to 2020 on the synoptic-scale meteorology of dust storm-induced dust days in Seoul, Korea, in response to the Arctic Oscillation. Increased springtime warming in the Arctic-East Asia region correlated with a reduction of six days in the occurrence of dust storm-induced dust days in Seoul, Korea, along with a decline in the intensity of these days by -1.6 ㎍ m-3yr-1 in PM10 mass concentration. The declining number of dust storm-induced dust days in Korea during the 2010s was the result of synoptic-scale meteorological analysis, which showed increased high-pressure activity as indicated by the negative potential vorticity unit. Moreover, a distinct pattern emerged in the distribution of dust storm-induced dust days in Korea based on the Arctic Oscillation Index (AOI), showing an increase in negative AOI and a decrease in positive AOI. Although the northward shift of the polar jet weakened the southerly low-pressure system activity over Mongolia and northern China, a reinforced high-pressure system formed over the Chinese continent during dust-storm-induced dust days with a negative AOI. This resulted in both a decrease in the frequency of dust-storm-induced dust days and reduction in wind speeds, facilitating their transport from source regions to Korea. Conversely, on days with positive AOIs, an extensive warm and stagnant high-pressure system dominated mainland China, accompanied by further cooling of the northern segment of the polar jet. A notable decline in wind speed in the lower troposphere across the Mongolia-northern China-Korea region diminished the occurrence of dust storm-induced dust days and also weakened their long-range transport.

1991-2020년의 30년 동안 봄철(3-5월)에 북극-동아시아 지역의 지표면 부근 대기 온난화가 북극 진동에 따라 한국의 서울에서 발생하는 황사 사례일의 종관 기상 특성에 미치는 영향을 분석하였다. 북극-동아시아 지역의 봄철 온난화 증가는 한국의 서울에서 황사 사례일을 6일을 감소시켰고, 황사 사례일의 PM10 질량 농도도 -1.6 ㎍ m-3yr-1으로 강도를 약화시키는데 기여하고 있었다. 2010년대 한국에서 감소하고 있는 황사 사례일에 대한 동아시아 지역의 종관 기상 특성은 음(-)의 잠재소용돌이도(Potential Vorticity Unit; PVU)로 나타나는 고기압성 활동이 증가하고 있었다. 또한, 한국에서는 음(-)의 북극진동지수(Arctic Oscillation Index; AOI)에서 황사 사례일이 증가하고 양(+)에서는 감소하는 정적 편포를 보였다. AOI가 음(-)인 황사 사례일에서는 중국 대륙에 온난한 고기압이 강화되고 있었다. 더불어 한대 제트의 중심 위치가 북쪽으로 이동하면서 몽골과 중국 북부에서는 한대 기단의 남하에 의한 저기압성 활동이 약해지고 있었다. 황사의 발생이 감소하였을 뿐 아니라 발원지로부터 한국으로 황사를 수송하는 풍속이 감소하고 있었다. 반면, AOI가 양(+)인 황사 사례일에서는 중국 대륙에 광역적으로 온난하고 정체적인 고기압이 위치하고 있었으며, 한대 제트의 북쪽이 더욱 냉각되어 있었다. 몽골-중국 북부-한국에 이르는 지역에서 하층 대류권의 현저한 풍속 감소가 황사 발생을 감소시킬 뿐 아니라 장거리 수송을 약화시키는 원인이 되는 것으로 보인다.

Keywords

References

  1. Ahn, B.Y. and Lim, B., 2022, A case study of the heavy Asian Dust observed in May 2011. Journal of the Korean earth science society, 43, 386-404, doi: 10.5467/JKESS.2022.43.3.386. (in Korean)
  2. Bodor, K., Micheu, M.M., Keresztesi, A., Birsan, M.V., Nita, I.A., Bodor, Z., Petres, S., Korodi, A., and Szep, R., 2021, Effects of PM10 and weather on respiratory and cardiovascular diseases in the Ciuc Basin (Romanian Carpathians). Atmosphere, 12, 289, doi: 10.3390/atmos12020289.
  3. Cheung, H.N., Zhou, W., Mok, H.Y., and Wu, M.C., 2012, Relationship between Ural-Siberian blocking and the East Asian winter monsoon in relation to the arctic oscillation and the El Nino-Southern oscillation. Journal of Climate, 25, 4242-4257, doi: 10.1175/JCLI-D-11-00225.1.
  4. Cho, J.H., Kim, H.S., and Chung, Y.S., 2021, Spatiotemporal changes of PM10 trends in South Korea caused by East Asian atmospheric variability. Air Quality, Atmosphere & Health, 14, 1001-1016, doi: 10.1007/s11869-021-00995-y.
  5. Cho, J.H. and Kim, H.S., 2023, PM10 aerosol enhancement in the anticyclonic anomalies caused by the East Asian spring warming of 2021. Atmospheric Research, 281, 106496, doi: 10.1016/j.atmosres.2022.106496.
  6. Cho, J.H. and Kim, H.S., 2024, The transboundary contribution of PM10 in Korea depended on the dipole surface temperature pattern in the East Asian region during April of 2021. Atmospheric Research, 298, 107149, doi: 10.1016/j.atmosres.2023.107149.
  7. Chung, Y.S., Kim, H.S., Han, K.Y., and Jugder, D., 2003, On East Asian sand and duststorms and associated significant dustfall observed from January to May 2001. Water, Air, & Soil Pollution: Focus, 3, 259-277, doi: 10.1023/A:1023259011271.
  8. Fan, K. and Wang, H., 2004, Antarctic oscillation and the dust weather frequency in North China. Geophysical Research Letters, 31, L10201, doi: 10.1029/2004GL019465.
  9. Gao, T., Han, J., Wang, Y., Pei, H., and Lu, S., 2012, Impacts of climate abnormality on remarkable dust storm increase of the Hunshdak Sandy Lands in northern China during 2001-2008. Meteorological Applications, 19, 265-278, doi: 10.1002/met.251.
  10. Gong, D.Y., Mao, R., and Fan, Y.-D., 2006, East Asian dust storm and weather disturbance: Possible links to the Arctic Oscillation. International Journal of Climatology, 26, 1379-1396, doi: 10.1002/joc.1324.
  11. He, J., Gong, S., Yu, Y., Yu, L., Wu, L., Mao, H., Song, C., Zhao, S., Liu, H., Li, X., and Li, R., 2017, Air pollution characteristics and their relation to meteorological conditions during 2014-2015 in major Chinese cities. Environmental Pollution, 223, 484-496, doi: 10.1016/j.envpol.2017.01.050.
  12. Huang, W., Chen, R., Wang, B., Wright, J.S., Yang, Z. and Ma, W., 2017, Potential vorticity regimes over East Asia during winter. Journal of Geophysical Research: Atmospheres, 122, 1524-1544, doi: 10.1002/2016JD025893.
  13. Husar, R.B., Tratt, D.M., Schichtel, B.A., Falke, S.R., Li, F., Jaffe, D., Gasso, S., Gill, T., Laulainen, N.S., Lu, F., Reheis, M.C., Chun, Y., Westphal, D., Holben, B.N., Gueymard, C., McKendry, I., Kuring, N., Feldman, G.C., McClain, C., Frouin, R.J., Merrill, J., DuBois, D., Vignola, F., Murayama, T., Nickovic, S., Wilson, W.E., Sassen, K., Sugimoto, N., and MalmMalm, W.C., 2001, Asian dust events of April 1998. Journal of Geophysical Research: Atmospheres, 106, 18317-18330, doi: 10.1029/2000JD900788.
  14. Jaffe, D., Anderson, T., Covert, D., Kotchenruther, R., Trost, B., Danielson, J., Simpson, W., Berntsen, T., Karlsdottir, S., Blake, D., Harris, J., Carmichael, G., and Uno, I., 1999, Transport of Asian air pollution to North America. Geophysical Research Letters, 26, 711-714, doi: 10.1029/1999GL900100.
  15. Jeong, J.H. and Ho, C.H., 2005, Changes in occurrence of cold surges over east Asia in association with Arctic Oscillation. Geophysical Research Letters, 32, L14704, doi: 10.1029/2005GL023024.
  16. Kim, H.S. and Cho, J.H., 2019, Case studies of mass concentration variation in the central-southern Korean Peninsula caused by synoptic scale transport of dust storms. Journal of the Korean earth science society, 40, 414-427, doi: 10.5467/JKESS.2019.40.4.41.
  17. Kim, H.S. and Chung, Y.S., 2008, Satellite and ground observations for large-scale air pollution transport in the Yellow Sea region. Journal of Atmospheric Chemistry, 60, 103-116, doi: 10.1007/s10874-008-9111-4.
  18. Kim, H.S. and Chung, Y.S., 2010, On the sandstorms and associated airborne dustfall episodes observed at Cheongwon in Korea in 2005. Air Quality, Atmosphere & Health, 3, 83-94, doi: 10.1007/s11869-009-0054-y.
  19. Kim, H.S., Chung, Y.S., and Cho, J.H., 2017, Long-term variations of dust storms and associated dustfall and related climate factors in Korea during 1997-2016. Air Quality, Atmosphere & Health, 10, 1269-1280, doi: 10.1007/s11869-017-0513-9.
  20. Kim, H.J. and Ahn, J.B., 2012, Possible impact of the autumnal North Pacific SST and November AO on the East Asian winter temperature. Journal of Geophysical Research: Atmospheres, 117, D12104, doi: 10.1029/2012JD017527.
  21. Kim, Y.K., Cho, J.H., and Kim, H.S., 2021, Analysis of concentration variations of long-range transport PM10, NO2, and O3 due to COVID-19 shutdown in East Asia in 2020. The Journal of The Korean Earth Science Society, 42, 278-295, doi: 10.5467/JKESS.2021.42.3.278. (in Korean)
  22. Mao, R., Ho, C.H., Shao, Y., Gong, D.Y., and Kim, J., 2011, Influence of Arctic Oscillation on dust activity over northeast Asia. Atmospheric Environment, 45, 326-337, doi: 10.1016/j.atmosenv.2010.10.020.
  23. Masatoshi, Y., 2002, Climatology of yellow sand (Asian sand, Asian dust or Kosa) in East Asia. Science in China Series D: Earth Sciences. 45, 59-70, doi: 10.1007/BF02878390.
  24. Natsagdorj, L., Jugder, D., and Chung, Y.S., 2003, Analysis of dust storms observed in Mongolia during 1937-1999. Atmospheric Environment, 37, 1401-1411, doi: 10.1016/S1352-2310(02)01023-3.
  25. Park, T.W., Ho, C.H., Yang, S., and Jeong, J.H., 2010, Influences of Arctic Oscillation and Madden-Julian Oscillation on cold surges and heavy snowfalls over Korea: A case study for the winter of 2009-2010. Journal of Geophysical Research: Atmospheres, 115, D23122, doi: 10.1029/2010JD014794.
  26. Qian, Y., Hsu, P.C., Wang, H., and Duan, M., 2022, Distinct influential mechanisms of the warm pool Madden-Julian Oscillation on persistent extreme cold events in Northeast China. Atmospheric and Oceanic Science Letters, 15, 100226, doi: 10.1016/j.aosl.2022.100226.
  27. Thompson, D.W.J. and Wallace, J.M., 1998, The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25, 1297-1300, doi: 10.1029/98GL00950.
  28. Uno, I., Carmichael, G.R., Streets, D.G., Tang, Y., Yienger, J.J., Satake, S., Wang, Z., Woo, J.H., Guttikunda, S., Uematsu, M., Matsumoto, K., Tanimoto, H., Yoshioka, K., and Iida, T., 2003, Regional chemical weather forecasting system CFORS: Model descriptions and analysis of surface observations at Japanese island stations during the ACE-Asia experiment. Journal of Geophysical Research: Atmospheres, 108, 8668, doi: 10.1029/2002JD002845.
  29. Woo, S.H., Kim, B.M., Jeong, J.H., Kim, S.J., and Lim, G.H., 2012, Decadal changes in surface air temperature variability and cold surge characteristics over northeast Asia and their relation with the Arctic Oscillation for the past three decades (1979-2011). Journal of Geophysical Research: Atmospheres, 117, D18117, doi: 10.1029/2011JD016929.
  30. Woo, S.H., Kim, B.M., and Kug, J.S., 2015, Temperature variation over East Asia during the lifecycle of weak stratospheric polar vortex. Journal of Climate, 28, 5857-5872, doi: 10.1175/JCLI-D-14-00790.1.
  31. Zhang, P., Jeong, J.H., Yoon, J.H., Kim, H., Simon Wang, S.Y., Linderholm, H.W., Fang, K., Wu, X., and Chen, D., 2020, Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science, 370, 1095-1099, doi: 10.1126/science.abb3368.
  32. Zhuang, G., Guo, J., Yuan, H., and Zhao, C., 2001, The compositions, sources, and size distribution of the dust storm from China in spring of 2000 and its impact on the global environment. Chinese Science Bulletin, 46, 895-900, doi: 10.1007/BF02900460.