DOI QR코드

DOI QR Code

Relationship between Tropical Cyclone Intensity and Physical Parameters Derived from TRMM TMI Data Sets

TRMM TMI 관측과 태풍 강도와의 관련성

  • Byon, Jae-Young (National Institute of Meteorological Research, Korea Meteorological Administration)
  • Published : 2008.08.30

Abstract

TRMM TMI data were used to investigate a relationship between physical parameters from microwave sensor and typhoon intensities from June to September, 2004. Several data such as 85GHz brightness temperature (TB), polarization corrected temperature (PCT), precipitable water, ice content, rain rate, and latent heat release retrieved from the TMI observation were correlated to the maximum wind speeds in the best-track database by RSMC-Tokyo. Correlation coefficient between TB and typhoon intensity was -0.2 - -0.4 with a maximum value in the 2.5 degree radius circle from the center of tropical cyclone. The value of correlation between in precipitable water, rain, latent heat, and typhoon intensity is in the range of 0.2-0.4. Correlation analysis with respect to storm intensity showed that maximum correlation is observed at 1.0-1.5 degree radius circle from the center of tropical cyclone in the initial stage of tropical cyclone, while maximum correlation is shown in 0.5 degree radius in typhoon stage. Correlation coefficient was used to produce regressed intensities and adopted for typhoon Rusa (2002) and Maemi (2003). Multiple regression with 85GHz TB and precipitable water was found to provide an improved typhoon intensity when taking into account the storm size. The results indicate that it may be possible to use TB and precipitable water from satellite observation as a predictor to estimate the intensity of a tropical cyclone.

마이크로파 센서로부터 산출된 물리량과 태풍강도와의 관련성을 2004년 6월에서 9월까지 관측된 태풍과 TRMM TMI 자료를 이용하여 조사하였다. TMI 관측으로부터 산출된 85 GHz 밝기온도(TB), 편광보정온도(PCT), 총 수증기량, 얼음, 강우강도, 잠열방출량은 RMSC-Tokyo의 태풍 best-track 데이터베이스의 최대 풍속으로 정의된 태풍강도와 상관분석을 실시하였다 TB와 태풍강도의 최대 상관계수는 태풍 중심으로부터 반경 2.5도 공간평균을 하였을 때 $-0.2{\sim}-0.4$를 나타냈다. 총 수증기량, 강우강도, 잠열방출량과 태풍강도와의 상관계수는 $0.2{\sim}0.4$를 보였다. 태풍 강도 크기에 따른 상관계수 분포는 태풍 발달의 초기 단계에서는 열대성 저기압 중심으로부터 반경 $1.0{\sim}1.5$도 공간 평균을 하였을 때 최대값을 보였으나 태풍이 가장 크게 발달하였을 때는 태풍 중심에서 반경 0.5도의 공간 평균을 하였을 때 최대 상관성이 나타났다. 최대 상관계수를 나타낸 변수와 공간 규모는 회귀분석으로부터 태풍을 강도를 산출할 수 있으며 태풍 Rusa(2002)와 Maemi(2003)에 적용하였다. 태풍 강도의 오차는 태풍 강도 크기를 고려한 85GHz TB와 총 수증기량의 다중 회귀에서 최소를 보였다. 본 연구는 마이크로파 위성 관측의 TB와 총 수중기량으로부터 태풍 강도 산출에 기여할 수 있음을 지시한다.

Keywords

References

  1. Allison, L. J., T. J. Schmugge, and G. Byrne, 1974. Tropical cyclone rainfall as measured by the Nimbus 5 electrically scanning microwave radiometer, Bulletin of American Meteorological Society, 55(9): 1074-1089 https://doi.org/10.1175/1520-0477(1974)055<1074:TCRAMB>2.0.CO;2
  2. Cecil, D. J. and E. J. Zipser, 1999. Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning, Monthly Weather Review, 127(1): 103-123 https://doi.org/10.1175/1520-0493(1999)127<0103:RBTCIA>2.0.CO;2
  3. Hawkins, J. D., T. F. Lee, J. Turk, C. Sampson, J. Kent, and K. Richardson, 2001. Real-time internet distribution of satellite products for tropical cyclone reconnaissance, Bulletin of American Meteorological Society, 82(4): 567-578 https://doi.org/10.1175/1520-0477(2001)082<0567:RIDOSP>2.3.CO;2
  4. Kidder, S. Q., W. M. Gray, and T. H. Vonder Haar, 1978. Estimating tropical cyclone central pressure and outer winds from satellite microwave data, Monthly Weather Review, 106(10): 1458-1464 https://doi.org/10.1175/1520-0493(1978)106<1458:ETCCPA>2.0.CO;2
  5. Rosenkranz, P. W., D. H. Staelin, and N. C. Grody, 1978. Typhoon June (1975) viewed by a scanning microwave spectrometer, Journal of Geophysical Research, 83(C4): 1857-1868 https://doi.org/10.1029/JC083iC04p01857
  6. Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989. Precipitation retrieval over land and ocean with SSM/I: Identification and characteristics of the scattering signal, Journal of Atmospheric and Oceanic Technology, 6(2): 254-273 https://doi.org/10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2
  7. Spencer, R. W. 1993. Global oceanic precipitation from the MSU during 1979-91 and comparisons to other climatologies, Journal of Climate, 6(7): 1301-1326 https://doi.org/10.1175/1520-0442(1993)006<1301:GOPFTM>2.0.CO;2
  8. Velden, C. S., 1989. Observational analyses of North Atlantic tropical cyclones from NOAA polarorbiting satellite microwave data, Journal of Applied Meteorology, 28(1): 59-70 https://doi.org/10.1175/1520-0450(1989)028<0059:OAONAT>2.0.CO;2
  9. Velden, C. S. and W. L. Smith, 1983. Monitoring tropical cyclone evolution with NOAA satellite microwave observations, Journal of Applied Meteorology, 22(5): 714-724 https://doi.org/10.1175/1520-0450(1983)022<0714:MTCEWN>2.0.CO;2
  10. Velden, C. S., B. M. Goodman, and R. T. Merrill, 1991. Western North Pacific tropical cyclone intensity estimation from NOAA polarorbiting satellite microwave data, Monthly Weather Review, 119(1): 159-168 https://doi.org/10.1175/1520-0493(1991)119<0159:WNPTCI>2.0.CO;2
  11. Velden, C. S., T. L. Olander, and R. M. Zehr, 1998. Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite infrared imagery, Weather and Forecasting, 13(1): 172-186 https://doi.org/10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2
  12. Wood, J., 2003. Relationship of ice content to hurricane intensity examined using TRMM/TMI data sets, Meteorology and Atmospheric Physics, 83(3): 187-196