A good understanding of normal modal variability of civil structures due to varying environmental conditions such as temperature and wind is important for reliable performance of vibration-based damage detection methods. This paper addresses the quantification of wind-induced modal variability of a cable-stayed bridge making use of one-year monitoring data. In order to discriminate the wind-induced modal variability from the temperature-induced modal variability, the one-year monitoring data are divided into two sets: the first set includes the data obtained under weak wind conditions (hourly-average wind speed less than 2 m/s) during all four seasons, and the second set includes the data obtained under both weak and strong (typhoon) wind conditions during the summer only. The measured modal frequencies and temperatures of the bridge obtained from the first set of data are used to formulate temperature-frequency correlation models by means of artificial neural network technique. Before the second set of data is utilized to quantify the wind-induced modal variability, the effect of temperature on the measured modal frequencies is first eliminated by normalizing these modal frequencies to a reference temperature with the use of the temperature-frequency correlation models. Then the wind-induced modal variability is quantitatively evaluated by correlating the normalized modal frequencies for each mode with the wind speed measurement data. It is revealed that in contrast to the dependence of modal frequencies on temperature, there is no explicit correlation between the modal frequencies and wind intensity. For most of the measured modes, the modal frequencies exhibit a slightly increasing trend with the increase of wind speed in statistical sense. The relative variation of the modal frequencies arising from wind effect (with the maximum hourly-average wind speed up to 17.6 m/s) is estimated to range from 1.61% to 7.87% for the measured 8 modes of the bridge, being notably less than the modal variability caused by temperature effect.
Proper understanding of offshore wind speed variability is of essential importance in practice, which provides useful information to a wide range of coastal and marine activities. In this paper, long-term wind speed data recorded at various offshore stations are analyzed in the framework of fractal dimension analysis. Fractal analysis is a well-established data analysis tool, which is particularly suitable to determine the complexity in time series from a quantitative point of view. The fractal dimension is estimated using the conventional box-counting method. The results suggest that the wind speed data are generally fractals, which are likely to exhibit a persistent nature. The mean fractal dimension varies from 1.31 at an offshore weather station to 1.43 at an urban station, which is mainly associated with surface roughness condition. Monthly variability of fractal dimension at offshore stations is well-defined, which often possess larger values during hotter months and lower values during winter. This is partly attributed to the effect of thermal instability. In addition, with an increase in measurement interval, the mean and minimum fractal dimension decrease, whereas the maximum and coefficient of variation increase in parallel.
In the complex terrain where local wind systems are formed, accurate understanding of regional wind variability is required for wind resource assessment. In this paper, cluster analysis based on the similarity of time-series wind vector was applied to classify wind regions with similar wind characteristics and the meteorological validity of regionalization method was evaluated. Wind regions in Jeju Island and Busan were classified using the wind resource map of Korea created by a mesoscale numerical weather prediction modeling. The evaluation was performed by comparing wind speed, wind direction, and wind variability of each wind region. Wind characteristics, such as mean wind speed and prevailing wind direction, in the same wind region were similar and wind characteristics in different wind regions were meteor-statistically distinct. It was able to identify a singular wind region at the top area of Mt. Halla using the inconsistency of wind direction variability. Furthermore, it was found that the regionalization results correspond with the topographic features of Jeju Island and Busan, showing the validity.
The reliability of antenna tower designed for a n-year design wind speed is determined by considering the variability of the strength of the component members and of the mean wind speed. For obtaining the n-year design wind speed, maximum annual wind speed is assumed to follow Gumbel Type-1 distribution. Following this distribution of the wind speed, the mean and standard deviation of stresses in each component member are worked out. The variability of the strength of members is defined by means of the nominal strength and a coefficient of variation. The probability of failure of the critical members of tower is determined by the first order second moment method (FOSM) of reliability analysis. Using the above method, the reliability against allowable stress failure of the critical members as well as the system reliabilities for a 75 m tall antenna tower, designed for n-year design wind speed, are presented.
This study examines the future variability of surface wind speed and solar radiation based on climate change scenario over the Korean Peninsula. Climate change scenarios used in this study are RCP 4.5 and 8.5 with a 12.5 km horizontal resolution. Climate change scenario RCP 4.5 and 8.5 reproduce the general features of wind speed over the Korean Peninsula, such as strong wind speed during spring and winter and weak wind speed during summer. When compared with the values of wind speed and solar radiation of the future, they are expected to decrease current wind and solar resource map. Comparing the resource maps using RCP 4.5 and 8.5 scenarios, wind speed and solar radiation decrease with increasing greenhouse gas concentration. Meteorological resource maps of future wind and solar radiation should be improved with high resolution for the industrial application.
A regional wind network with complex surface conditions must be designed with sufficient space and time resolution to resolve the local circulations. In this study, the spatial variations of the wind field observed in the Seoul and Jeju regional networks were evaluated in terms of annual, seasons, and months to assess the spatial homogeneity of wind fields within the regional networks. The coherency of the wind field as a function of separation distance between stations indicated that significant coherency was sometimes not captured by the network, as inferred by low correlations between adjacent stations. A meso-velocity scale was defined in terms of the spatial variability of the wind within the network. This problem is predictably most significant with weak winds, dull prevailing wind, clear skies and significant topography. The relatively small correlations between stations imply that the wind at a given point cannot be estimated by interpolating winds from the nearest stations. For the Seoul and Jeju regional network, the meso-velocity scale has typically a same order of magnitude as the speed of the network averaged wind, revealing the large spatial variability of the Jeju network station imply topography and weather. Significant scatter in the relationship between spatial variability of the wind field and the wind speed is thought to be related to thermally-generated flows. The magnitude of the mesovelocity scale was significantly different along separation distance between stations, wind speed, intensity of prevailing wind, clear and cloudy conditions, topography. Resultant wind vectors indicate much different flow patterns along condition of contributing factors. As a result, the careful considerations on contributing factors such as prevailing wind in season, weather, and complex surface conditions with topography and land/sea contrast are required to assess the spatial variations of wind field on a regional network. The results in the spatial variation from the mesovelocity scale are useful to represent the characteristics of regional wind speed including lower surface conditions over the grid scale of large scale atmospheric model.
The objective of the investigation is the analysis of wind-tunnel experimental errors, associated with the measurement of aeroelastic coefficients of bridge decks (Scanlan flutter derivatives). A two-degree-of-freedom experimental apparatus is used for the measurement of flutter derivatives. A section model of a closed-box bridge deck is considered in this investigation. Identification is based on free-vibration aeroelastic tests and the Iterative Least Squares method. Experimental error investigation is carried out by repeating the measurements and acquisitions thirty times for each wind tunnel speed and configuration of the model. This operational procedure is proposed for analyzing the experimental variability of flutter derivatives. Several statistical quantities are examined; these quantities include the standard deviation and the empirical probability density function of the flutter derivatives at each wind speed. Moreover, the critical flutter speed of the setup is evaluated according to standard flutter theory by accounting for experimental variability. Since the probability distribution of flutter derivatives and critical flutter speed does not seem to obey a standard theoretical model, polynomial chaos expansion is proposed and used to represent the experimental variability.
Wind resource data of short-term period has to be corrected a long-term period by using MCP method that Is a statistical method to predict the long-term wind resource at target site data with a reference site data. Because the field measurement for wind assessment is limited to a short period by various constraints. In this study, 2 different MCP methods such as Linear regression and Matrix method were chosen to compare the predictive accuracy between the methods. Finally long-term wind speed, wind power density and capacity factor at the target site for 20 years were estimated for the variability of wind and wind energy. As a result, for 20 years annual average wind speed, Yellow sea off shore wind farm was estimated to have 4.29% for coefficient of variation, CV, and -9.57%~9.53% for range of variation, RV. It was predicted that the annual wind speed at Yellow sea offshore wind farm varied within ${\pm}10%$.
The results of reference wind speed calculation in Croatia as a base for the revision of the Croatian standards for wind loads upon structures are presented. Wind speed averaged over 10 minutes, at 10 m height, in a flat, open terrain, with a 50-year mean return period is given for 27 meteorological stations in Croatia. It is shown that the greatest part of Croatia is covered with expected reference wind speeds up to 25 m/s. Exceptions are stations with specific anemometer location open to the bura wind which is accelerated due to the channelling effects of local orography and the nearby mountain passes where the expected reference wind speed ranges between 38 m/s and 55 m/s. The methodology for unifying all available information from wind measurements regardless of the averaging period is discussed by analysing wind speed variability at the meteorological station in Hvar.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.11
no.4
/
pp.247-253
/
2011
A sustainability of electricity supply has emerged as a critical issue for low carbon green growth in South Korea. Wind power is the fastest growing source of renewable energy. However, due to its own intermittency and volatility, the power supply generated from wind energy has variability in nature. Hence, accurate forecasting of wind speed and power plays a key role in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. This paper presents a short-term wind speed prediction method based on support vector regression. Moreover, particle swarm optimization is adopted to find an optimum setting of hyper-parameters in support vector regression. An illustration is given by real-world data and the effect of model regularization by particle swarm optimization is discussed as well.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.