• Title/Summary/Keyword: wind properties

Search Result 567, Processing Time 0.026 seconds

Analysis of Economic Feasibility and Suitability of Highrise Buildings Using Highstrength Steel (고강도 강재를 활용한 초고층건물의 경제성 및 적합성 분석)

  • Kim, Seonwoong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.197-204
    • /
    • 2017
  • This paper aims to analyze the economic feasibility and investigate the possibility of elastic seismic design of wind-designed highrise concentrically braced frames considering change of mechanical properties of Korean steel under the strong wind and the low seismicity in Korea. To this end, first, highrise concentrically braced frames were designed considering strong wind load. And then, analyses of the economics of them were performed. The seismic performance evaluation of wind-designed highrise buildings was conducted using the response spectrum analysis procedure. Analysis results show that it is possible to save up to approximately 90% of the amount of steel on the 10% increase in steel strength without serviceability. However, with serviceability, the design sectional area of the steel with relatively high strength tends to increment considerably because of the lateral stiffness due to reduction of the inertia moment and so on. This point might apply to limitation of the steel with high tensile yield strength.

Introduction to the NREL Design Codes for System Performance Test of Wind Turbines - Part I : Preprocessor (풍력터빈 시스템 성능평가를 위한 NREL 프로그램군에 관한 소개 - 전처리기를 중심으로)

  • Bang, Je-Sung;Rim, Chae Whan;Chung, Tae Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.41.2-41.2
    • /
    • 2011
  • NREL NWTC Deside codes are analyzed and introduced to develop the system performance simulation program for wind turbine generator systems. In this paper, The AirfoilPrep generating the airfoil data, the IECWind generating hub-height wind data with extreme condition following IEC 61400-1, the TurbSim generating stochastic full-field turbulent wind data, the PreComp calculating structural and dynamic properties of composite blade and the BModes making mode shapes of blade and tower are explained respectively.

  • PDF

Study of Large Wind Power Generator with Evaporative Cooling System

  • Wang, Haifeng;Li, Wang;Guo, Hui;Yang, Jie;Gu, Guobiao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.93-97
    • /
    • 2014
  • Evaporative cooling system has the advantage of high cooling performance, good insulation properties, less electrical fault, easy to maintain and high reliability, can meet the requirements of the cooling system in wind power generators. Based on a large number of theoretical researches and engineering practices, we had a comprehensive study of evaporative cooling wind power generator. Studies show that evaporative cooling system has advantage as the cooling system of wind power generator.

Verification of drag-reduction capabilities of stiff compliant coatings in air flow at moderate speeds

  • Boiko, Andrey V.;Kulik, Victor M.;Chun, Ho-Hwan;Lee, In-Won
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.242-253
    • /
    • 2011
  • Skin frictional drag reduction efficiency of "stiff" compliant coating was investigated in a wind tunnel experiment. Flat plate compliant coating inserts were installed in a wind tunnel and the measurements of skin frictional drag and velocity field were carried out. The compliant coatings with varying viscoelastic properties had been prepared using different composition. In order to optimize the coating thickness, the most important design parameter, the dynamic viscoelastic properties had been determined experimentally. The aging of the materials (variation of their properties) during half a year was documented as well. A design procedure proposed by Kulik et al. (2008) was applied to get an optimal value for the coating thickness. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coatings. The compliant coatings with the thickness h = 7mm achieved 4~5% drag reduction within a velocity range 30~40 m/s. The drag reduction mechanism of the attenuation of turbulence velocity fluctuations due to the compliant coating was demonstrated. It is envisioned that larger drag reduction effect is obtainable at higher flow velocities for high speed trains and subsonic aircrafts.

Mechanical Performance Evaluation of Concrete with Recycled Coarse Aggregate Selected by Multi-stage Wind Pressure (다단형 풍압처리에 의해 선별된 순환굵은골재 적용 콘크리트의 역학적 성능 평가)

  • Chu, Young-Kyu;Lee, Seung-Tae;Lee, Se-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, the mechanical properties of concrete with recycled coarse aggregate (RG) selected by multi-stage wind pressure (MSWP) treatment were evaluated. After evaluating the basic properties of natural and recycled coarse aggregates, the mechanical performance of the recycled coarse aggregates concrete was experimentally investigated. As a result, it was found that the MSWP technique could improve the fundamental properties such as density and water absorption of RG. In addition, the concrete with RG selected by MSWP showed a better mechanical performance, indicating a higher strength values, surface electric resistivity and a lower absorption. Thus, it seems that the MSWP technique can be effective for the production of high-quality RG.

Scale model experimental of a prestressed concrete wind turbine tower

  • Ma, Hongwang;Zhang, Dongdong;Ma, Ze;Ma, Qi
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.353-367
    • /
    • 2015
  • As concrete wind-turbine towers are increasingly being used in wind-farm construction, there is a growing need to understand the behavior of concrete wind-turbine towers. In particular, experimental evaluations of concrete wind-turbine towers are necessary to demonstrate the dynamic characteristics and load-carrying capacity of such towers. This paper describes a model test of a prestressed concrete wind-turbine tower that examines the dynamic characteristics and load-carrying performance of the tower. Additionally, a numerical model is presented and used to verify the design approach. The test results indicate that the first natural frequency of the prestressed concrete wind turbine tower is 0.395 Hz which lies between frequencies 1P and 3P (0.25-0.51 Hz). The damper ratio is 3.3%. The maximum concrete compression stresses are less than the concrete design compression strength, the maximum tensile stresses are less than zero and the prestressed strand stresses are less than the design strength under both the serviceability and ultimate limit state loads. The maximum displacement of the tower top are 331 mm and 648 mm for the serviceability limit state and ultimate limit state, respectively, which is less than L/100 = 1000 mm. Compared with traditional tall wind-turbine steel towers, the prestressed concrete tower has better material damping properties, potential lower maintenance cost, and lower construction costs. Thus, the prestressed concrete wind-turbine tower could be an innovative engineering solution for multi-megawatt wind turbine towers, in particular those that are taller than 100 m.

Whole-life wind-induced deflection of insulating glass units

  • Zhiyuan Wang;Junjin Liu;Jianhui Li;Suwen Chen
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • Insulating glass units (IGUs) have been widely used in buildings in recent years due to their superior thermal insulation performance. However, because of the panel reciprocating motion and fatigue deterioration of sealants under long-term wind loads, many IGUs have the problem of early failure of watertight properties in real usage. This study aimed to propose a statistical method for wind-induced deflection of IGU panels during the whole life service period, for further precise analysis of the accumulated fatigue damage at the sealed part of the edge bond. By the estimation of the wind occurrence regularity based on wind pressure return period, the events of each wind speed interval during the whole life were obtained for the IGUs at 50m height in Beijing, which are in good agreement with the measured data. Also, the wind-induced deflection analysis method of IGUs based on the formula of airspace coefficient was proposed and verified as an improvement of the original stiffness distribution method with the average relative error compared to the test being about 3% or less. Combining the two methods above, the deformation of the outer and inner panes under wind loads during 30 years was precisely calculated, and the deflection and stress state at selected locations were obtained finally. The results show that the compression displacement at the secondary sealant under the maximum wind pressure is close to 0.3mm (strain 2.5%), and the IGUs are in tens of thousands of times the low amplitude tensile-compression cycle and several times to dozens of times the relatively high amplitude tensile-compression cycle environment. The approach proposed in this paper provides a basis for subsequent studies on the durability of IGUs and the wind-resistant behaviors of curtain wall structures.

A Probabilistic Approach to Small Signal Stability Analysis of Power Systems with Correlated Wind Sources

  • Yue, Hao;Li, Gengyin;Zhou, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1605-1614
    • /
    • 2013
  • This paper presents a probabilistic methodology for small signal stability analysis of power system with correlated wind sources. The approach considers not only the stochastic characteristics of wind speeds which are treated as random variables with Weibull distributions, while also the wind speed spatial correlations which are characterized by a correlation matrix. The approach based on the 2m+1 point estimate method and Cornish Fisher expansion, the orthogonal transformation technique is used to deal with the correlation of wind farms. A case study is carried out on IEEE New England system and the probabilistic indexes for eigenvalue analysis are computed from the statistical processing of the obtained results. The accuracy and efficiency of the proposed method are confirmed by comparing with the results of Monte Carlo simulation. The numerical results indicate that the proposed method can actually capture the probabilistic characteristics of mode properties of the power systems with correlated wind sources and the consideration of spatial correlation has influence on the probability of system small signal stability.

A Study on the Comparative Analysis Damage Cases of Wind Hazard and Poongsoojiri (풍수지리와 바람재난의 피해사례 비교분석에 관한 연구)

  • Lee, Dong Ik;Heo, Seong Je
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.2
    • /
    • pp.41-48
    • /
    • 2013
  • Based on the wind engineering, for the first time, a effects of wind in the Poongsoojiri is developed. The fluctuating wind velocity is assumed as time-dependent random process described by the time-independent random process with deterministic function during a short duration of time. The wind properties are represented by separation, turbulence, eddies, wind profiles, turbulence intensity and surface roughness. In this papers, there were compared the effects of wind engineering with the concepts of Poongsoojiri.

Solar Wind Observations Using STELab-IPS Array In Japan

  • Fujiki, Ken'ichi;Tokumaru, Munetoshi;Iju, Tomoya;Hirota, Maria;Noda, Momotaro;Kojima, Masayoshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.93.1-93.1
    • /
    • 2011
  • Radio wave from a compact radio source such as a quasar are scattered by irregularities of electron density. The scattered waves interfere with each other as they propagate to the Earth producing diffraction patterns on the ground. This phenomenon is called interplanetary scintillation (IPS). The IPS pattern contains the information of solar wind velocities and density fluctuations passing across a line-of-sight (LOS) from an observer to a radio source. The IPS is a useful tool which allows us to measure the solar wind in three dimensional space inaccessible to in situ observations. Although the IPS measurement is an integral of solar wind velocities and density fluctuations along the LOS, which causes degradation of accuracy, we have succeeded to develop computer assisted tomography (CAT) analysis to remove the effect of LOS integration. These techniques greatly improved the accuracy of determinations of solar wind velocity structures. In this talk we present our IPS observation system and long-term variation of global solar wind structures from 1980-2009, then we focus on recent peculiar solar wind properties.

  • PDF