• Title/Summary/Keyword: wind model

Search Result 3,667, Processing Time 0.029 seconds

Korean V2G Technology Development for Flexible Response to Variable Renewable Energy (변동성 재생e 유연 대응을 위한 한국형 V2G 기술개발)

  • Son, Chan;Yu, Seung-duck;Lim, You-seok;Park, Ki-jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.329-333
    • /
    • 2021
  • V2G (Vehicle to Grid) technology for an EV (Electric Vehicle) has been assumed as so promising in a near future for its useful energy resource concept but still yet to be developed around the world for specific service purposes through various R&BD projects. Basically, V2G returns power stored in vehicle at a cheaper or unused time to the grid at more expensive or highly peaked time, and is accordingly supposed to provide such roles like peak shaving or load levelling according to customer load curve, frequency regulation or ancillary reserves, and balancing power fluctuation to grid from the weather-sensitive renewable sources like wind or solar generations. However, it has recently been debated over its prominent usage as diffusing EVs and the required charging/discharging infrastructure, partially for its addition of EV ownership costs with more frequent charging/discharging events and user inconvenience with a relative long-time participation in the previously engaged V2G program. This study suggests that a Korean DR (Demand Response) service integrated V2G system especially based upon a dynamic charge/pause/discharge scheme newly proposed to ISO/IEC 15118 rev. 2 can deal with these concerns with more profitable business model, while fully making up for the additional component (ex. battery) and service costs. It also indicates that the optimum economic, environmental, and grid impacts can be simulated for this V2G-DR service particularly designed for EV aggregators (V2G service providers) by proposing a specific V2G engagement program for the mediated DR service providers and the distributed EV owners.

Revisit the Cause of the Cold Surge in Jeju Island Accompanied by Heavy Snow in January 2016 (2016년 1월 폭설을 동반한 제주도 한파의 원인 재고찰)

  • Han, Kwang-Hee;Ku, Ho-Young;Bae, Hyo-Jun;Kim, Baek-Min
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.207-221
    • /
    • 2022
  • In Jeju, on January 23, 2016, a cold surge accompanied by heavy snowfall with the most significant amount of 12 cm was the highest record in 32 years. During this period, the temperature of 850 hPa in January was the lowest in 2016. Notably, in 2016, the average surface temperature of January on the Polar cap was the highest since 1991, and 500 hPa geopotential height also showed the highest value. With this condition, the polar vortex in the northern hemisphere meandered and expanded into the subtropics regionally, covering the Korean Peninsula with very high potential vorticity up to 7 Potential Vorticity Unit. As a result, the strong cold advection, mostly driven by a northerly wind, around the Korean Peninsula occurred at over 2𝜎. Previous studies have not addressed this extreme synoptic condition linked to polar vortex expansion due to the unprecedented Arctic warming. We suggest that the occurrence of a strong Ural blocking event after the abrupt warming of the Barents/Karas seas is a major cause of unusually strong cold advection. With a specified mesoscale model simulation with SST (Sea Surface Temperature), we also show that the warmer SST condition near the Korean Peninsula contributed to the heavy snowfall event on Jeju Island.

Retrofitted built-up steel angle members for enhancing bearing capacity of latticed towers: Experiment

  • Wang, Jian-Tao;Wu, Xiao-Hong;Yang, Bin;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.681-695
    • /
    • 2021
  • Many existing transmission or communication towers designed several decades ago have undergone nonreversible performance degradation, making it hardly meet the additional requirements from upgrades in wind load design codes and extra services of electricity and communication. Therefore, a new-type non-destructive reinforcement method was proposed to reduce the on-site operation of drilling and welding for improving the quality and efficiency of reinforcement. Six built-up steel angle members were tested under compression to examine the reinforcement performance. Subsequently, the cyclic loading test was conducted on a pair of steel angle tower sub-structures to investigate the reinforcement effect, and a simplified prediction method was finally established for calculating the buckling bearing capacity of those new-type retrofitted built-up steel angles. The results indicates that: no apparent difference exists in the initial stiffness for the built-up specimens compared to the unreinforced steel angles; retrofitting the steel angles by single-bolt clamps can guarantee a relatively reasonable reinforcement effect and is suggested for the reduced additional weight and higher construction efficiency; for the substructure test, the latticed substructure retrofitted by the proposed reinforcement method significantly improves the lateral stiffness, the non-deformability and energy dissipation capacity; moreover, an apparent pinching behavior exists in the hysteretic loops, and there is no obvious yield plateau in the skeleton curves; finally, the accuracy validation result indicates that the proposed theoretical model achieves a reasonable agreement with the test results. Accordingly, this study can provide valuable references for the design and application of the non-destructive upgrading project of steel angle towers.

The Impact of Renewable Energy Generation on the Level and Volatility of Electricity Price: The Case of Korea (재생에너지 발전 확대에 따른 전력계통한계가격의 변화)

  • Lee, Seojin;Yu, Jongmin
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.141-163
    • /
    • 2022
  • This paper empirically analyzes the effect of renewable electricity generation on the System Marginal Price (SMP) in Korea. Using an ARX-GARCHX model with hourly data from 2016 to 2020, we evaluate SMP determinants and merit order effects. As a result, we find that solar and wind power, as well as gas price and total load, play a critical role in the SMP. In particular, solar power reduces the SMP level but raises volatility during peak and off-peak periods. This result implies that SMP may fall as renewable electricity generation increases, leading to a decrease in the profitability of existing power plants and investment in renewables. On the other hand, even if the subsidy of renewable energy increases the burden on the SMP, it can be offset by the merit order effect, which lowers the SMP.

Network pharmacoligical analysis for selection between Saposhnikoviae Radix and Glehniae Radix focusing on ischemic stroke (방풍(防風)과 해방풍(海防風) 중 뇌경색 연구에 더욱 적합한 약재 선정을 위한 네트워크 약리학적 분석)

  • Jin Yejin;Lim Sehyun;Cho Suin
    • Herbal Formula Science
    • /
    • v.31 no.3
    • /
    • pp.171-182
    • /
    • 2023
  • Objectives : Saposhnikoviae Radix (SR) and Glehniae Radix (GR) have been frequently used in traditional medicine to treat diseases related to 'wind' syndrome, but there have been cases where it has been mixed in a state where the plant of origin is not clear. In this study, to select materials for conducting preclinical cerebral infarction research, the network pharmacology analysis method was used to select suitable medicinal materials for the study. Methods : In this study, a Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) based network pharmacology analysis method was used, and oral bioavailability (OB), drug likeness (DL), Caco-2 and BBB permeability were utilized to select compounds with potential activity. For the values of each variable used in this study, OB ≥ 20%, DL ≥ 0.18, Caco-2 ≥ 0, and BBB ≥ -0.3 were applied, then networks of bioactive compounds, target proteins, and target diseases was constructed. STRING database was used to construct a protein-protein interaction network. Results : It was confirmed that SR rather than GR has various target proteins and target diseases based on network pharmacological analysis using TCMSP database. And it was analyzed that the bioactive compounds only in SR act more on neurovascular diseases, and both drugs are expected to be effectively used for cardiovascular diseases. Conclusions : In our future study, SR will be used in an ischemic stroke mouse model, and the mechanism of action will be explored focusing on apoptosis and cell proliferation.

Estimation of leeway of jigging fishing vessels by external factors (외력에 의한 채낚기 어선의 표류 추정)

  • Chang-Heon, LEE;Kwang-Il, KIM;Joo-Sung, KIM;Sang-Lok, YOO
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.4
    • /
    • pp.299-309
    • /
    • 2022
  • Among the fishing vessels operating in the coastal waters, jigging fishing vessels were considered representative vessels engaged only by wind, sea, tide, and external force. Then, a fishing vessel with a length of shorter than 10 m from July 1, 2018 to August 5, 2019 was studied to obtain a drift prediction model by multiple regression analysis. In the correlation analysis between variables for leeway of speed and direction, the speed and direction of tidal seem to be the most affected in coastal waters. Therefore, it should be considered an explanatory variable when conducting drift tests. As a result of multiple regression analysis on the predicted equations of leeway speed and direction due to the external force on the drift of the fishing vessel, p < 0.000 was considered significant in the F-test, but the coefficient of determination was 55.2% and 37.8%. The effect on the predicted leeway speed was in the order of the tidal speed and current speed. In addition, the impact on the predicted leeway direction was in the order of the tidal speed and current speed. ŷ(m/s) = - 0.0011(x1) + 0.9206(x2) + 0.0001(x3) + 0.0002(x4) + 0.0050(x5) + 0.0529(x6) + 0.2457 ŷ(degree) = 0.6672(x1) + 93.1699(x2) + 0.0585(x3) - 0.0244(x4) - 1.2217(x5) + 4.6378(x6) - 0.0837

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

Formant Synthesis of Haegeum Sounds Using Cepstral Envelope (캡스트럼 포락선을 이용한 해금 소리의 포만트 합성)

  • Hong, Yeon-Woo;Cho, Sang-Jin;Kim, Jong-Myon;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.526-533
    • /
    • 2009
  • This paper proposes a formant synthesis method of Haegeum sounds using cepstral envelope for spectral modeling. Spectral modeling synthesis (SMS) is a technique that models time-varying spectra as a combination of sinusoids (the "deterministic" part), and a time-varying filtered noise component (the "stochastic" part). SMS is appropriate for synthesizing sounds of string and wind instruments whose harmonics are evenly distributed over whole frequency band. Formants extracted from cepstral envelope are parameterized for synthesis of sinusoids. A resonator by Impulse Invariant Transform (IIT) is applied to synthesize sinusoids and the results are bandpass filtered to adjust magnitude. The noise is calculated by first generating the sinusoids with formant synthesis, subtracting them from the original sound, and then removing some harmonics remained. Linear interpolation is used to model noise. The synthesized sounds are made by summing sinusoids, which are shown to be similar to the original Haegeum sounds.

A Case Study on Near-Cloud Turbulence around the Mesoscale Convective System in the Korean Peninsula (한반도에서 발생한 중규모 대류계의 구름 주변 난류 발생 메커니즘 사례 연구)

  • Sung-Il Yang;Ju Heon Lee;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.153-176
    • /
    • 2024
  • At 0843 UTC 30 May 2021, a commercial aircraft encountered severe turbulence at z = 11.5 km associated with the rapid development of Mesoscale Convective System (MCS) in the Gyeonggi Bay of Korea. To investigate the generation mechanisms of Near-Cloud Turbulence (NCT) near the MCS, Weather Research and Forecasting model was used to reproduce key features at multiple-scales with four nested domains (the finest ∆x = 0.2 km) and 112 hybrid vertical layers. Simulated subgrid-scale turbulent kinetic energy (SGS TKE) was located in three different regions of the MCS. First, the simulated NCT with non-zero SGS TKE at z = 11.5 km at 0835 UTC was collocated with the reported NCT. Cloud-induced flow deformation and entrainment process on the downstream of the overshooting top triggered convective instability and subsequent SGS TKE. Second, at z = 16.5 km at 0820 UTC, the localized SGS TKE was found 4 km above the overshooting cloud top. It was attributed to breaking down of vertically propagating convectively-induced gravity wave at background critical level. Lastly, SGS TKE was simulated at z = 11.5 km at 0930 UTC during the dissipating stage of MCS. Upper-level anticyclonic outflow of MCS intensified the environmental westerlies, developing strong vertical wind shear on the northeastern quadrant of the dissipating MCS. Three different generation mechanisms suggest the avoidance guidance for the possible NCT events near the entire period of the MCS in the heavy air traffic area around Incheon International Airport in Korea.