• 제목/요약/키워드: wind field

검색결과 1,593건 처리시간 0.025초

Simulation of stationary Gaussian stochastic wind velocity field

  • Ding, Quanshun;Zhu, Ledong;Xiang, Haifan
    • Wind and Structures
    • /
    • 제9권3호
    • /
    • pp.231-243
    • /
    • 2006
  • An improvement to the spectral representation algorithm for the simulation of wind velocity fields on large scale structures is proposed in this paper. The method proposed by Deodatis (1996) serves as the basis of the improved algorithm. Firstly, an interpolation approximation is introduced to simplify the computation of the lower triangular matrix with the Cholesky decomposition of the cross-spectral density (CSD) matrix, since each element of the triangular matrix varies continuously with the wind spectra frequency. Fast Fourier Transform (FFT) technique is used to further enhance the efficiency of computation. Secondly, as an alternative spectral representation, the vectors of the triangular matrix in the Deodatis formula are replaced using an appropriate number of eigenvectors with the spectral decomposition of the CSD matrix. Lastly, a turbulent wind velocity field through a vertical plane on a long-span bridge (span-wise) is simulated to illustrate the proposed schemes. It is noted that the proposed schemes require less computer memory and are more efficiently simulated than that obtained using the existing traditional method. Furthermore, the reliability of the interpolation approximation in the simulation of wind velocity field is confirmed.

Buffeting response of long suspension bridges to skew winds

  • Xu, Y.L.;Zhu, L.D.;Xiang, H.F.
    • Wind and Structures
    • /
    • 제6권3호
    • /
    • pp.179-196
    • /
    • 2003
  • A long suspension bridge is often located within a unique wind environment, and strong winds at the site seldom attack the bridge at a right angle to its long axis. This paper thus investigates the buffeting response of long suspension bridges to skew winds. The conventional buffeting analysis in the frequency domain is first improved to take into account skew winds based on the quasi-steady theory and the oblique strip theory in conjunction with the finite element method and the pseudo-excitation method. The aerodynamic coefficients and flutter derivatives of the Tsing Ma suspension bridge deck under skew winds, which are required in the improved buffeting analysis, are then measured in a wind tunnel using specially designed test rigs. The field measurement data, which were recorded during Typhoon Sam in 1999 by the Wind And Structural Health Monitoring System (WASHMS) installed on the Tsing Ma Bridge, are analyzed to obtain both wind characteristics and buffeting responses. Finally, the field measured buffeting responses of the Tsing Ma Bridge are compared with those from the computer simulation using the improved method and the aerodynamic coefficients and flutter derivatives measured under skew winds. The comparison is found satisfactory in general.

고해상도 바람지도 구축 시스템에 관한 연구 (Study of evaluation wind resource detailed area with complex terrain using combined MM5/CALMET system)

  • 이화운;김동혁;김민정;이순환;박순영;김현구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.274-277
    • /
    • 2008
  • To evaluate high-resolution wind resources for local and coastal area with complex terrain was attemped to combine the prognostic MM5 mesoscale model with CALMET diagnostic modeling this study. Firstly, MM5 was simulated for 1km resolution, nested fine domain, with FDDA using QuikSCAT seawinds data was employed to improve initial meteorological fields. Wind field and other meteorological variables from MM5 with all vertical levels used as initial guess field for CALMET. And 5 surface and 1 radio sonde observation data is performed objective analysis whole domain cells. Initial and boundary condition are given by 3 hourly RDAPS data of KMA in prognostic MM5 simulation. Geophysical data was used high-resolution terrain elevation and land cover(30 seconds) data from USGS with MM5 simulation. On the other hand SRTM 90m resolution and EGIS 30m landuse was adopted for CALMET diagnostic simulation. The simulation was performed on whole year for 2007. Vertical wind field a hour from CALMET and latest results of MM5 simulation was comparison with wind profiler(KEOP-2007 campaign) data at HAENAM site.

  • PDF

Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads

  • Di Paola, M.;Muscolino, G.;Sofi, A.
    • Wind and Structures
    • /
    • 제7권2호
    • /
    • pp.107-130
    • /
    • 2004
  • This paper presents a time-domain approach for analyzing nonlinear random vibrations of long-span suspended cables under transversal wind. A consistent continuous model of the cable, fully accounting for geometrical nonlinearities inherent in cable behavior, is adopted. The effects of spatial correlation are properly included by modeling wind velocity fluctuation as a random function of time and of a single spatial variable ranging over cable span, namely as a one-variate bi-dimensional (1V-2D) random field. Within the context of a Galerkin's discretization of the equations governing cable motion, a very efficient Monte Carlo-based technique for second-order analysis of the response is proposed. This procedure starts by generating sample functions of the generalized aerodynamic loads by using the spectral decomposition of the cross-power spectral density function of wind turbulence field. Relying on the physical meaning of both the spectral properties of wind velocity fluctuation and the mode shapes of the vibrating cable, the computational efficiency is greatly enhanced by applying a truncation procedure according to which just the first few significant loading and structural modal contributions are retained.

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.

제주 행원 풍력 단지 실부하 운전 특성 연구 (A Study on the Characteristic of Field Operation of Wind farm at Hangwon, Cheju)

  • 오시덕;차종환;이현주;허종철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.744-750
    • /
    • 2001
  • In now a days, the concern to environment and energy saving problem is increased worldly. So many countries are developing the wind power system as clean energy system. In our country, Cheju local government has the plan of the Cheju Island wind farm and 600kW class 2 wind turbines, 660kW class 2 turbines, 225kW class 1 turbine and 750kW class 2 turbines has been operated at Hangwon. In this paper the field operation data of the wind turbines was analyzed and was compared with the characteristics & performance of each turbines. As the results, we would find the possibility of wind turbine in domestic and suggest the direction of developing technology.

  • PDF

Typhoon wind hazard analysis using the decoupling approach

  • Hong, Xu;Li, Jie
    • Wind and Structures
    • /
    • 제35권4호
    • /
    • pp.287-296
    • /
    • 2022
  • Analyzing the typhoon wind hazards is crucial to determine the extreme wind load on engineering structures in the typhoon prone region. In essence, the typhoon hazard analysis is a high-dimensional problem with randomness arising from the typhoon genesis, environmental variables and the boundary layer wind field. This study suggests a dimension reduction approach by decoupling the original typhoon hazard analysis into two stages. At the first stage, the randomness of the typhoon genesis and environmental variables are propagated through the typhoon track model and intensity model into the randomness of the key typhoon parameters. At the second stage, the probability distribution information of the key typhoon parameters, combined with the randomness of the boundary layer wind field, could be used to estimate the extreme wind hazard. The Chinese southeast coastline is taken as an example to demonstrate the adequacy and efficiency of the suggested decoupling approach.

Numerical simulation of 3-D probabilistic trajectory of plate-type wind-borne debris

  • Huang, Peng;Wang, Feng;Fu, Anmin;Gu, Ming
    • Wind and Structures
    • /
    • 제22권1호
    • /
    • pp.17-41
    • /
    • 2016
  • To address the uncertainty of the flight trajectories caused by the turbulence and gustiness of the wind field over the roof and in the wake of a building, a 3-D probabilistic trajectory model of flat-type wind-borne debris is developed in this study. The core of this methodology is a 6 degree-of-freedom deterministic model, derived from the governing equations of motion of the debris, and a Monte Carlo simulation engine used to account for the uncertainty resulting from vertical and lateral gust wind velocity components. The influence of several parameters, including initial wind speed, time step, gust sampling frequency, number of Monte Carlo simulations, and the extreme gust factor, on the accuracy of the proposed model is examined. For the purpose of validation and calibration, the simulated results from the 3-D probabilistic trajectory model are compared against the available wind tunnel test data. Results show that the maximum relative error between the simulated and wind tunnel test results of the average longitudinal position is about 20%, implying that the probabilistic model provides a reliable and effective means to predict the 3-D flight of the plate-type wind-borne debris.

Finite element modelling of transmission line structures under tornado wind loading

  • Hamada, A.;El Damatty, A.A.;Hangan, H.;Shehata, A.Y.
    • Wind and Structures
    • /
    • 제13권5호
    • /
    • pp.451-469
    • /
    • 2010
  • The majority of weather-related failures of transmission line structures that have occurred in the past have been attributed to high intensity localized wind events, in the form of tornadoes and downbursts. A numerical scheme is developed in the current study to assess the performance of transmission lines under tornado wind load events. The tornado wind field is based on a model scale Computational Fluid Dynamic (CFD) analysis that was conducted and validated in a previous study. Using field measurements and code specifications, the CFD model data is used to estimate the wind fields for F4 and F2 full scale tornadoes. The wind forces associated with these tornado fields are evaluated and later incorporated into a nonlinear finite element three-dimensional model for the transmission line system, which includes a simulation for the towers and the conductors. A comparison is carried between the forces in the members resulting from the tornadoes, and those obtained using the conventional design wind loads. The study reveals the importance of considering tornadoes when designing transmission line structures.

The appropriate shape of the boundary transition section for a mountain-gorge terrain model in a wind tunnel test

  • Hu, Peng;Li, Yongle;Huang, Guoqing;Kang, Rui;Liao, Haili
    • Wind and Structures
    • /
    • 제20권1호
    • /
    • pp.15-36
    • /
    • 2015
  • Characterization of wind flows over a complex terrain, especially mountain-gorge terrain (referred to as the very complex terrain with rolling mountains and deep narrow gorges), is an important issue for design and operation of long-span bridges constructed in this area. In both wind tunnel testing and numerical simulation, a transition section is often used to connect the wind tunnel floor or computational domain bottom and the boundary top of the terrain model in order to generate a smooth flow transition over the edge of the terrain model. Although the transition section plays an important role in simulation of wind field over complex terrain, an appropriate shape needs investigation. In this study, two principles for selecting an appropriate shape of boundary transition section were proposed, and a theoretical curve serving for the mountain-gorge terrain model was derived based on potential flow theory around a circular cylinder. Then a two-dimensional (2-D) simulation was used to compare the flow transition performance between the proposed curved transition section and the traditional ramp transition section in a wind tunnel. Furthermore, the wind velocity field induced by the curved transition section with an equivalent slope of $30^{\circ}$ was investigated in detail, and a parameter called the 'velocity stability factor' was defined; an analytical model for predicting the velocity stability factor was also proposed. The results show that the proposed curved transition section has a better flow transition performance compared with the traditional ramp transition section. The proposed analytical model can also adequately predict the velocity stability factor of the wind field.