DOI QR코드

DOI QR Code

Typhoon wind hazard analysis using the decoupling approach

  • Hong, Xu (College of Civil Engineering, Hefei University of Technology) ;
  • Li, Jie (College of Civil Engineering, Tongji University)
  • Received : 2022.06.19
  • Accepted : 2022.10.26
  • Published : 2022.10.25

Abstract

Analyzing the typhoon wind hazards is crucial to determine the extreme wind load on engineering structures in the typhoon prone region. In essence, the typhoon hazard analysis is a high-dimensional problem with randomness arising from the typhoon genesis, environmental variables and the boundary layer wind field. This study suggests a dimension reduction approach by decoupling the original typhoon hazard analysis into two stages. At the first stage, the randomness of the typhoon genesis and environmental variables are propagated through the typhoon track model and intensity model into the randomness of the key typhoon parameters. At the second stage, the probability distribution information of the key typhoon parameters, combined with the randomness of the boundary layer wind field, could be used to estimate the extreme wind hazard. The Chinese southeast coastline is taken as an example to demonstrate the adequacy and efficiency of the suggested decoupling approach.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Fundamental Research Funds for the Central Universities of China (NOs. JZ2022HGQA0168 and PA2022GDSK0063).

References

  1. Batts, M.E., Russell, L.R. and Simiu, E. (1980), "Hurricane wind speeds in the United-States", J. Struc.t Div.- ASCE, 106, 2001-2016. https://doi.org/10.1061/JSDEAG.0005541.
  2. Chen, J.B., Sun, W.L., Li, J. and Xu, J. (2013), "Stochastic harmonic function representation of stochastic processes", J Appl Mech-T Asme, 80(1). https://doi.org/10.1115/1.4006936.
  3. Compo, G.P., Whitaker, J.S., Sardeshmukh, P.D., Matsui, N., Allan, R.J., Yin, X., Gleason, B.E., Vose, R.S., Rutledge, G., Bessemoulin, P., Bronnimann, S., Brunet, M., Crouthamel, R.I., Grant, A.N., Groisman, P.Y., Jones, P.D., Kruk, M.C., Kruger, A.C., Marshall, G.J., Maugeri, M., Mok, H.Y., Nordli, O ., Ross, T.F., Trigo, R.M., Wang, X.L., Woodruff, S.D. and Worley, S.J. (2011), "The twentieth century reanalysis project: The twentieth century reanalysis project", Q. J. Roy Meteor. Soc., 137, 1-28. https://doi.org/10/bmz4kn. 10/bmz4kn
  4. Emanuel, K. (2017), "A fast intensity simulator for tropical cyclone risk analysis", Nat. Hazards, 88, 779-796. https://doi.org/10.1007/s11069-017-2890-7.
  5. Emanuel, K., Ravela, S., Vivant, E. and Risi, C. (2006), "A statistical deterministic approach to hurricane risk assessment", B Am. Meteorol. Soc., 87, 299-314. https://doi.org/10.1175/Bams-87-3-299.
  6. Fang, G., Zhao, L., Cao, S., Zhu, L. and Ge, Y. (2020), "Estimation of tropical cyclone wind hazards in coastal regions of China", Nat. Hazards Earth Syst. Sci., 20, 1617-1637. https://doi.org/10/gnbfk7. 10/gnbfk7
  7. Holland, G.J. (1980), "An analytic model of the wind and pressure profiles in hurricanes", Mon. Weather Rev., 108, 1212-1218. https://doi.org/10.1175/15200493(1980)108<1212:Aamotw>2.0.Co;2.
  8. Hong, X. and Li, J. (2021), "A beta-advection typhoon track model and its application for typhoon hazard assessment", J. Wind Eng. Ind. Aerod., 208, 104439. https://doi.org/10/ghr6tn. 10/ghr6tn
  9. Hong, X., Kareem, A. and Li, J. (2020), "Validation of the fast intensity model for typhoon and its application to the estimation of typhoon wind hazard for the southeast coast of China", J. Wind Eng. Ind. Aerod., 206, 104379. https://doi.org/10.1016/j.jweia.2020.104379.
  10. Ishii, M., Shouji, A., Sugimoto, S. and Matsumoto, T. (2005), "Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using icoads and the Kobe collection", Int. J. Climatol., 25(7), 865-879. https://doi.org/10.1002/joc.1169.
  11. Jing, R.Z. and Lin, N. (2019), "Tropical cyclone intensity evolution modeled as a dependent hidden Markov process", J Climate, 32, 7837-7855. https://doi.org/10.1175/Jcli-D-19-0027.1.
  12. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. and Joseph, D. (1996), "The NCEP/NCAR 40-year reanalysis project", B Am. Meteorol. Soc., 77, 437-471. https://doi.org/10.1175/15200477(1996)077<0437:Tnyrp>2.0.Co;2.
  13. Kepert, J. (2001), "The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory", J. Atmos. Sci., 58, 2469-2484. https://doi.org/10.1175/1520-0469(2001)058<2469:Tdoblj>2.0.Co;2.
  14. Kepert, J. and Wang, Y.Q. (2001), "The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement", J. Atmos. Sci., 58, 2485-2501. https://doi.org/10.1175/15200469(2001)058<2485:Tdoblj>2.0.Co;2.
  15. Kepert, J.D. (2012), "Choosing a boundary layer parameterization for tropical cyclone modeling", Mon. Weather Rev., 140, 1427-1445. https://doi.org/10.1175/Mwr-D-11-00217.1.
  16. Langousis, A., Veneziano, D. and Chen, S. (2009), "Boundary layer model for moving tropical cyclones, in: Hurricanes and Climate Change", Springer.
  17. Li, J. (2006), "A physical approach to stochastic dynamical systems", Sciencepaper Online (in Chinese), 1, 95-104.
  18. Li, J. and Chen, J. (2009), "Stochastic dynamics of structures", John Wiley & Sons.
  19. Li, J. and Hong, X. (2021), "Typhoon hazard analysis based on the probability density evolution theory", J. Wind Eng. Ind. Aerod., 219, 104796. https://doi.org/10/gnrnn7. 10/gnrnn7
  20. Li, S.H. and Hong, H.P. (2015), "Observations on a hurricane wind hazard model used to map extreme hurricane wind speed", J. Struct. Eng., 141. https://doi.org/10.1061/(Asce)St.1943-541x.0001217.
  21. Lu, X., Yu, H., Ying, M., Zhao, B., Zhang, S., Lin, L., Bai, L. and Wan, R. (2021), "Western north pacific tropical cyclone database created by the China meteorological administration", Adv. Atmos. Sci., 38, 690-699. https://doi.org/10/gjn5qm. 10/gjn5qm
  22. Marks, D.G. (1992), "The beta and advection model for hurricane track forecasting", Washington, D. C.
  23. Meng, Y., Matsui, M. and Hibi, K. (1995), "An analytical model for simulation of the wind-field in a typhoon boundary-layer", J. Wind Eng. Ind. Aerod., 56, 291-310. https://doi.org/10.1016/0167-6105(94)00014-5.
  24. Monterey, G. and Levitus, S. (1997), "Climatological cycle of mixed layer depth in the world ocean (No. Volume: 5) ", Washington, DC.
  25. Powell, M., Soukup, G., Cocke, S., Gulati, S., Morisseau-Leroy, N., Hamid, S., Dorst, N. and Axe, L. (2005), "State of Florida hurricane loss projection model: Atmospheric science component", J. Wind Eng. Ind. Aerod., 93, 651-674. https://doi.org/10.1016/j.jweia.2005.05.008.
  26. Russell, L.R. (1977), "Predicting Wind-Induced Response in Hurricane Zones", J. Struct. Div.- ASCE, 103, 2075-2076. https://doi.org/10.1061/JSDEAG.0004757
  27. Scanlan, R.H. and Simiu, E. (1996), "Wind effects on structures: fundamentals and applications to design", Wiley New York.
  28. Smith, R.K. (2003), "A simple model of the hurricane boundary layer", Q. J. Roy Meteor. Soc., 129, 1007-1027. https://doi.org/10.1256/qj.01.197.
  29. Thompson, E.F. and Cardone, V.J. (1996), "Practical modeling of hurricane surface wind fields", J. Waterw. Port C. - ASCE, 122, 195-205. https://doi.org/10.1061/(Asce)0733-950x(1996)122:4(195)
  30. Vickery, P.J. and Twisdale, L.A. (1995a), "Prediction of hurricane wind speeds in the United States", J. Struct. Eng., 121, 1691-1699. https://doi.org/10/bd5357. 10/bd5357
  31. Vickery, P.J. and Twisdale, L.A. (1995b), "Wind-field and filling models for hurricane wind-speed predictions", J. Struct. Eng., 121, 1700-1709. https://doi.org/10/dmcdb7. 10/dmcdb7
  32. Vickery, P.J. and Wadhera, D. (2008), "Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H*wind data", J. Appl. Meteorol. Clim., 47, 2497-2517. https://doi.org/10.1175/2008jamc1837.1.
  33. Vickery, P.J., Masters, F.J., Powell, M.D. and Wadhera, D. (2009), "Hurricane hazard modeling: The past, present, and future", J. Wind Eng. Ind. Aerod., 97, 392-405. https://doi.org/10.1016/j.jweia.2009.05.005.
  34. Vickery, P.J., Skerlj, P.F. and Twisdale, L.A. (2000), "Simulation of hurricane risk in the U.S. using empirical track model", J. Struct. Eng., 126, 1222-1237. https://doi.org/10/crszwm. 10/crszwm
  35. Yang, J., Tao, J., Sudret, B. and Chen, J. (2020), "Generalized Fdiscrepancy-based point selection strategy for dependent random variables in uncertainty quantification of nonlinear structures", Int. J. Numer. Meth. Eng., 121, 1507-1529. https://doi.org/10/gnrnph. 10/gnrnph