Browse > Article
http://dx.doi.org/10.12989/was.2022.35.4.287

Typhoon wind hazard analysis using the decoupling approach  

Hong, Xu (College of Civil Engineering, Hefei University of Technology)
Li, Jie (College of Civil Engineering, Tongji University)
Publication Information
Wind and Structures / v.35, no.4, 2022 , pp. 287-296 More about this Journal
Abstract
Analyzing the typhoon wind hazards is crucial to determine the extreme wind load on engineering structures in the typhoon prone region. In essence, the typhoon hazard analysis is a high-dimensional problem with randomness arising from the typhoon genesis, environmental variables and the boundary layer wind field. This study suggests a dimension reduction approach by decoupling the original typhoon hazard analysis into two stages. At the first stage, the randomness of the typhoon genesis and environmental variables are propagated through the typhoon track model and intensity model into the randomness of the key typhoon parameters. At the second stage, the probability distribution information of the key typhoon parameters, combined with the randomness of the boundary layer wind field, could be used to estimate the extreme wind hazard. The Chinese southeast coastline is taken as an example to demonstrate the adequacy and efficiency of the suggested decoupling approach.
Keywords
decoupling approach; probability density evolution method; typhoon hazards; typhoon intensity; typhoon track;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Batts, M.E., Russell, L.R. and Simiu, E. (1980), "Hurricane wind speeds in the United-States", J. Struc.t Div.- ASCE, 106, 2001-2016. https://doi.org/10.1061/JSDEAG.0005541.   DOI
2 Chen, J.B., Sun, W.L., Li, J. and Xu, J. (2013), "Stochastic harmonic function representation of stochastic processes", J Appl Mech-T Asme, 80(1). https://doi.org/10.1115/1.4006936.   DOI
3 Meng, Y., Matsui, M. and Hibi, K. (1995), "An analytical model for simulation of the wind-field in a typhoon boundary-layer", J. Wind Eng. Ind. Aerod., 56, 291-310. https://doi.org/10.1016/0167-6105(94)00014-5.   DOI
4 Emanuel, K. (2017), "A fast intensity simulator for tropical cyclone risk analysis", Nat. Hazards, 88, 779-796. https://doi.org/10.1007/s11069-017-2890-7.   DOI
5 Holland, G.J. (1980), "An analytic model of the wind and pressure profiles in hurricanes", Mon. Weather Rev., 108, 1212-1218. https://doi.org/10.1175/15200493(1980)108<1212:Aamotw>2.0.Co;2.   DOI
6 Ishii, M., Shouji, A., Sugimoto, S. and Matsumoto, T. (2005), "Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using icoads and the Kobe collection", Int. J. Climatol., 25(7), 865-879. https://doi.org/10.1002/joc.1169.   DOI
7 Vickery, P.J. and Twisdale, L.A. (1995b), "Wind-field and filling models for hurricane wind-speed predictions", J. Struct. Eng., 121, 1700-1709. https://doi.org/10/dmcdb7.   DOI
8 Scanlan, R.H. and Simiu, E. (1996), "Wind effects on structures: fundamentals and applications to design", Wiley New York.
9 Smith, R.K. (2003), "A simple model of the hurricane boundary layer", Q. J. Roy Meteor. Soc., 129, 1007-1027. https://doi.org/10.1256/qj.01.197.   DOI
10 Vickery, P.J. and Twisdale, L.A. (1995a), "Prediction of hurricane wind speeds in the United States", J. Struct. Eng., 121, 1691-1699. https://doi.org/10/bd5357.   DOI
11 Vickery, P.J., Masters, F.J., Powell, M.D. and Wadhera, D. (2009), "Hurricane hazard modeling: The past, present, and future", J. Wind Eng. Ind. Aerod., 97, 392-405. https://doi.org/10.1016/j.jweia.2009.05.005.   DOI
12 Vickery, P.J., Skerlj, P.F. and Twisdale, L.A. (2000), "Simulation of hurricane risk in the U.S. using empirical track model", J. Struct. Eng., 126, 1222-1237. https://doi.org/10/crszwm.   DOI
13 Compo, G.P., Whitaker, J.S., Sardeshmukh, P.D., Matsui, N., Allan, R.J., Yin, X., Gleason, B.E., Vose, R.S., Rutledge, G., Bessemoulin, P., Bronnimann, S., Brunet, M., Crouthamel, R.I., Grant, A.N., Groisman, P.Y., Jones, P.D., Kruk, M.C., Kruger, A.C., Marshall, G.J., Maugeri, M., Mok, H.Y., Nordli, O ., Ross, T.F., Trigo, R.M., Wang, X.L., Woodruff, S.D. and Worley, S.J. (2011), "The twentieth century reanalysis project: The twentieth century reanalysis project", Q. J. Roy Meteor. Soc., 137, 1-28. https://doi.org/10/bmz4kn.   DOI
14 Emanuel, K., Ravela, S., Vivant, E. and Risi, C. (2006), "A statistical deterministic approach to hurricane risk assessment", B Am. Meteorol. Soc., 87, 299-314. https://doi.org/10.1175/Bams-87-3-299.   DOI
15 Lu, X., Yu, H., Ying, M., Zhao, B., Zhang, S., Lin, L., Bai, L. and Wan, R. (2021), "Western north pacific tropical cyclone database created by the China meteorological administration", Adv. Atmos. Sci., 38, 690-699. https://doi.org/10/gjn5qm.   DOI
16 Fang, G., Zhao, L., Cao, S., Zhu, L. and Ge, Y. (2020), "Estimation of tropical cyclone wind hazards in coastal regions of China", Nat. Hazards Earth Syst. Sci., 20, 1617-1637. https://doi.org/10/gnbfk7.   DOI
17 Hong, X. and Li, J. (2021), "A beta-advection typhoon track model and its application for typhoon hazard assessment", J. Wind Eng. Ind. Aerod., 208, 104439. https://doi.org/10/ghr6tn.   DOI
18 Hong, X., Kareem, A. and Li, J. (2020), "Validation of the fast intensity model for typhoon and its application to the estimation of typhoon wind hazard for the southeast coast of China", J. Wind Eng. Ind. Aerod., 206, 104379. https://doi.org/10.1016/j.jweia.2020.104379.   DOI
19 Marks, D.G. (1992), "The beta and advection model for hurricane track forecasting", Washington, D. C.
20 Jing, R.Z. and Lin, N. (2019), "Tropical cyclone intensity evolution modeled as a dependent hidden Markov process", J Climate, 32, 7837-7855. https://doi.org/10.1175/Jcli-D-19-0027.1.   DOI
21 Kepert, J.D. (2012), "Choosing a boundary layer parameterization for tropical cyclone modeling", Mon. Weather Rev., 140, 1427-1445. https://doi.org/10.1175/Mwr-D-11-00217.1.   DOI
22 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. and Joseph, D. (1996), "The NCEP/NCAR 40-year reanalysis project", B Am. Meteorol. Soc., 77, 437-471. https://doi.org/10.1175/15200477(1996)077<0437:Tnyrp>2.0.Co;2.   DOI
23 Kepert, J. (2001), "The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory", J. Atmos. Sci., 58, 2469-2484. https://doi.org/10.1175/1520-0469(2001)058<2469:Tdoblj>2.0.Co;2.   DOI
24 Kepert, J. and Wang, Y.Q. (2001), "The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement", J. Atmos. Sci., 58, 2485-2501. https://doi.org/10.1175/15200469(2001)058<2485:Tdoblj>2.0.Co;2.   DOI
25 Li, J. and Hong, X. (2021), "Typhoon hazard analysis based on the probability density evolution theory", J. Wind Eng. Ind. Aerod., 219, 104796. https://doi.org/10/gnrnn7.   DOI
26 Li, S.H. and Hong, H.P. (2015), "Observations on a hurricane wind hazard model used to map extreme hurricane wind speed", J. Struct. Eng., 141. https://doi.org/10.1061/(Asce)St.1943-541x.0001217.   DOI
27 Monterey, G. and Levitus, S. (1997), "Climatological cycle of mixed layer depth in the world ocean (No. Volume: 5) ", Washington, DC.
28 Powell, M., Soukup, G., Cocke, S., Gulati, S., Morisseau-Leroy, N., Hamid, S., Dorst, N. and Axe, L. (2005), "State of Florida hurricane loss projection model: Atmospheric science component", J. Wind Eng. Ind. Aerod., 93, 651-674. https://doi.org/10.1016/j.jweia.2005.05.008.   DOI
29 Li, J. (2006), "A physical approach to stochastic dynamical systems", Sciencepaper Online (in Chinese), 1, 95-104.
30 Li, J. and Chen, J. (2009), "Stochastic dynamics of structures", John Wiley & Sons.
31 Langousis, A., Veneziano, D. and Chen, S. (2009), "Boundary layer model for moving tropical cyclones, in: Hurricanes and Climate Change", Springer.
32 Thompson, E.F. and Cardone, V.J. (1996), "Practical modeling of hurricane surface wind fields", J. Waterw. Port C. - ASCE, 122, 195-205. https://doi.org/10.1061/(Asce)0733-950x(1996)122:4(195)   DOI
33 Vickery, P.J. and Wadhera, D. (2008), "Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H*wind data", J. Appl. Meteorol. Clim., 47, 2497-2517. https://doi.org/10.1175/2008jamc1837.1.   DOI
34 Yang, J., Tao, J., Sudret, B. and Chen, J. (2020), "Generalized Fdiscrepancy-based point selection strategy for dependent random variables in uncertainty quantification of nonlinear structures", Int. J. Numer. Meth. Eng., 121, 1507-1529. https://doi.org/10/gnrnph.   DOI
35 Russell, L.R. (1977), "Predicting Wind-Induced Response in Hurricane Zones", J. Struct. Div.- ASCE, 103, 2075-2076.   DOI