• Title/Summary/Keyword: wind barriers

Search Result 45, Processing Time 0.02 seconds

Aerodynamic interaction between static vehicles and wind barriers on railway bridges exposed to crosswinds

  • Huoyue, Xiang;Yongle, Li;Bin, Wang
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.237-247
    • /
    • 2015
  • Wind tunnel experiments are used to investigate the aerodynamic interactions between vehicles and wind barriers on a railway bridge. Wind barriers with four different heights (1.72 m, 2.05 m, 2.5 m and 2.95 m, full-scale) and three different porosities (0%, 30% and 40%) are studied to yield the aerodynamic coefficients of the vehicle and the wind barriers. The effects of the wind barriers on the aerodynamic coefficients of the vehicle are analyzed as well as the effects of the vehicle on the aerodynamic coefficients of the wind barriers. Finally, the relationship between the drag forces on the wind barriers and the aerodynamic coefficients of the vehicle are discussed. The results show that the wind barriers can significantly reduce the drag coefficients of the vehicle, but that porous wind barriers increase the lift forces on the vehicle. The windward vehicle will significantly reduce the drag coefficients of the porous wind barriers, but the windward and leeward vehicle will increase the drag coefficients of the solid wind barrier. The overturning moment coefficient is a linear function of the drag forces on the wind barriers if the full-scale height of the wind barriers $h{\leq}2.5m$ and the overturning moment coefficients $C_O{\geq}0$.

Effects of wind barriers on running safety of trains for urban rail cable-stayed bridge

  • He, Wei;Guo, Xiang-Rong;Zhu, Zhi-hui;Deng, Pengru;He, Xu-hui
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.43-57
    • /
    • 2020
  • Considering the wind barriers induced aerodynamic characteristic variations of both bridge deck and trains, this paper studies the effects of wind barriers on the safety and stability of trains as they run through an urban rail transit cable-stayed bridge which tends to be more vulnerable to wind due to its relatively low stiffness and lightweight. For the bridge equipped with wind barriers of different characteristics, the aerodynamic coefficients of trains and bridge decks are obtained from wind tunnel test firstly. And then, the space vibration equations of the wind-train-bridge system are established using the experimentally obtained aerodynamic coefficients. Through solving the dynamic equations, one can calculate the dynamic responses both the trains and bridge. The results indicate that setting wind barriers can effectively reduce the dynamic responses of both the trains and bridge, even though more wind forces acting on the bridge are caused by wind barriers. In addition, for urban rail transit cable-stayed bridges located in strong wind environment, the wind barriers are recommended to be set with 20% porosity and 2.5 m height according to the calculation results of cases with wind barriers porosity and height varying in two wide ranges, i.e., 10% - 40% and 2.0 m to 4.0 m, respectively.

Wind tunnel tests on flow fields of full-scale railway wind barriers

  • Su, Yang;Xiang, Huoyue;Fang, Chen;Wang, Lei;Li, Yongle
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.171-184
    • /
    • 2017
  • The present study provides a deeper understanding of the flow fields of a full-scale railway wind barriers by means of a wind tunnel test. First, the drag forces of the three wind barriers were measured using a force sensor, and the drag force coefficients were compared with a similar scale model. On this basis, the mean wind velocity and turbulence upwind and downwind of the wind barriers were measured. The effects of pore size and opening forms of the wind barrier were discussed. The results show that the test of the scaled wind barrier model may be unsafe, and it is suitable to adopt the full-scale wind barrier model. The pore size and the opening forms of wind barriers have a slight influence on the flow fields upwind of the wind barrier but have some influences on the flow fields and power spectra downwind of the wind barrier. The smaller pore size generates a lower turbulence density and value of the power spectrum near the wind barrier, and the porous wind barriers clearly provide better shelter than the bar-type wind barriers.

Dynamic analysis of coupled wind-train-bridge system considering tower shielding and triangular wind barriers

  • Zhang, Nan;Ge, Guanghui;Xia, He;Li, Xiaozhen
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.311-329
    • /
    • 2015
  • A method for analyzing the coupled wind-vehicle-bridge system is proposed that also considers the shielding effect of the bridge tower with triangular wind barriers. The static wind load and the buffeting wind load for both the bridge and the vehicle are included. The shielding effects of the bridge tower and the triangular wind barriers are incorporated by taking the surface integral of the wind load. The inter-history iteration is adopted to solve the vehicle-bridge dynamic equations with time-varying external loads. The results show that after installing the triangular wind barriers in the area of the bridge tower, the bridge response and the vehicle safety factors change slightly. The peak value of the train car body acceleration is significantly reduced when the wind barrier size is increased.

Mobile sand barriers for windblown sand mitigation: Effects of plane layout and included angle

  • Gao, Li;Cheng, Jian-jun;Ding, Bo-song;Lei, Jia;An, Yuan-feng;Ma, Ben-teng
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.275-290
    • /
    • 2022
  • Mobile sand barriers are a new type sand-retaining structure that can be moved and arranged according to the engineering demands of sand control. When only used for sand trapping, mobile sand barriers could be arranged in single row. For the dual purposes of sand trapping and sand stabilization, four rows of mobile sand barriers can be arranged in a staggered form. To reveal the effect of plane layout, the included angle between sand barrier direction and wind direction on the characteristics of flow fields and the sand control laws of mobile sand barriers, numerical computations and wind tunnel tests were conducted. The results showed that inflows deflected after passing through staggered arrangement sand barriers due to changes in included angle, and the sand barrier combination exerted successive wind resistance and group blocking effects. An analysis of wind resistance efficiency revealed that the effective protection length of staggered arrangement sand barriers approximately ranged from the sand barrier to 10H on the leeward side (H is sand barrier height), and that the effective protection length of single row sand barriers roughly ranged from 1H on the windward side to 20H on the leeward side. The distribution of sand deposit indicated that the sand interception increased with increasing included angle in staggered arrangement. The wind-breaking and sand-trapping effects were optimal when included angle between sand barrier direction and wind direction is 60°-90°.

Design criteria of wind barriers for traffic -Part 1: wind barrier performance

  • Kwon, Soon-Duck;Kim, Dong Hyawn;Lee, Seung Ho;Song, Ho Sung
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.55-70
    • /
    • 2011
  • This study investigates the design criteria required for wind barriers to protect vehicles running on an expressway under a high side wind. At the first stage of this study, the lateral deviations of vehicles in crosswinds were computed from the commercial software, CarSim and TruckSim, and the critical wind speeds for a car accident were then evaluated from a predefined car accident index. The critical wind speeds for driving stability were found to be 35 m/s for a small passenger car, yet 30 m/s for a truck and a bus. From the wind tunnel tests, the minimum height of a wind barrier required to reduce the wind speed by 50% was found to be 12.5% of the road width. In the case of parallel bridges, the placement of two edge wind barriers plus one wind barrier at center was recommended for a separation distance larger than 20 m (four lanes) and 10 m (six lanes) respectively, otherwise two wind barriers were recommended.

Analysis on running safety of train on bridge with wind barriers subjected to cross wind

  • Zhang, T.;Xia, H.;Guo, W.W.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.203-225
    • /
    • 2013
  • An analysis framework for vehicle-bridge dynamic interaction system under turbulent wind is proposed based on the relevant theory of wind engineering and dynamics. Considering the fluctuating properties of wind field, the stochastic wind velocity time history is simulated by the Auto-Regressive method in terms of power spectral density function of wind field. The bridge is represented by three-dimensional finite element model and the vehicle by a multi-rigid-body system connected by springs and dashpots. The detailed calculation formulas of unsteady aerodynamic forces on bridge and vehicle are derived. In addition, the form selection of wind barriers, which are applied as the windbreak measures of newly-built railways in northwest China, is studied based on the suggested evaluation index, and the suitable values about height and porosity rate of wind barriers are studied. By taking a multi-span simply-supported box-girder bridge as a case study, the dynamic response of the bridge and the running safety indices of the train traveling on the bridge with and without wind barriers are calculated. The limit values of train speed with respect to different wind velocities are proposed according to the allowance values in the design code.

Aerodynamic effect of wind barriers and running safety of trains on high-speed railway bridges under cross winds

  • Guo, Weiwei;Xia, He;Karoumi, Raid;Zhang, Tian;Li, Xiaozhen
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.213-236
    • /
    • 2015
  • For high-speed railways (HSR) in wind prone regions, wind barriers are often installed on bridges to ensure the running safety of trains. This paper analyzes the effect of wind barriers on the running safety of a high-speed train to cross winds when it passes on a bridge. Two simply-supported (S-S) PC bridges in China, one with 32 m box beams and the other with 16 m trough beams, are selected to perform the dynamic analyses. The bridges are modeled by 3-D finite elements and each vehicle in a train by a multi-rigid-body system connected with suspension springs and dashpots. The wind excitations on the train vehicles and the bridges are numerically simulated, using the static tri-component coefficients obtained from a wind tunnel test, taking into account the effects of wind barriers, train speed and the spatial correlation with wind forces on the deck. The whole histories of a train passing over the two bridges under strong cross winds are simulated and compared, considering variations of wind velocities, train speeds and without or with wind barriers. The threshold curves of wind velocity for train running safety on the two bridges are compared, from which the windbreak effect of the wind barrier are evaluated, based on which a beam structure with better performance is recommended.

Windproof ability of aerodynamic measures to improve the wind environment above a truss girder

  • Wang, Zewen;Tang, Haojun;Li, Yongle;Guo, Junjie;Liu, Zhanhui
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.423-437
    • /
    • 2021
  • Aerodynamic measures have been widely used for improving the flutter stability of long-span bridges, and this paper focuses their windproof ability to improve the wind environment for vehicles. The whole wind environment around a long-span bridge located in high altitude mountainous areas is first studied. The local wind environment above the deck is then focused by two perspectives. One is the windproof effects of aerodynamic measures, and the other is whether the bridge with aerodynamic measures meets the requirement of flutter stability after installing extra wind barriers in the future. Furthermore, the effects of different wind barriers are analyzed. Results show that aerodynamic measures exert potential effects on the local wind environment, as the vertical stabilizer obviously reduces wind velocities behind it while the closed central slot has limited effects. The suggested aerodynamic measures have the ability to offset the adverse effect of the wind barrier on the flutter stability of the bridge. Behind the wind barrier, wind velocities decrease in general, but in some places incoming flow has to pass through the deck with higher velocities due to the increase in blockage ratio. Further comparison shows that the wind barrier with four bars is optimal.

Weather Barriers of Urban Air Mobility (UAM) Operations: A Case Study of the Visibility and Wind Shear around Han-River Corridor (도심항공교통(UAM) 운용 실증 노선의 기상 특성 및 시사점: 한강회랑의 시정 및 바람을 중심으로)

  • Wan-Sik Won;Yeon Myung Kim
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.413-422
    • /
    • 2023
  • Urban Air Mobility (UAM) is promising, sustainable and efficient air transportation in a metropolitan area. Korean government has recently announced operation demonstration plans as a step toward commercialization of UAM. However, there is lack of understanding on the potential impact of weather on UAM operation. We collected weather observations from Gimpo International Airport and 5 automatic weather stations (AWS) along UAM corridor of the Han-River to assess weather barriers such as low visibility, wind gust and wind shear. The results show the frequency of low visibility near the corridor fluctuated significantly from year to year depending on the concentration of fine particulate matter (PM2.5) in Seoul. The frequency of high wind speed-shift calculated using 1-minute wind observations was increased not only during the spring season (March, April, and May) but also the beginning of rainy season (Jun). In addition, a chance of high wind shear from 1-minute wind observations varied by the stations, suggesting that the condition is largely affected by topography including a river and high-rise buildings. These basic weather properties suggest that there are substantial weather barriers to UAM operations along the Han-River Corridor, while they cannot properly surveil micro-scale weather conditions in detail such as wind gust and wind shear over the corridor. Thus, this study suggests that potential barriers related to adverse weather need to be evaluated, building high-density weather observations infrastructure prior to UAM demonstration and commercialization.