Browse > Article
http://dx.doi.org/10.12989/was.2021.32.5.423

Windproof ability of aerodynamic measures to improve the wind environment above a truss girder  

Wang, Zewen (Department of Bridge Engineering, Southwest Jiaotong University)
Tang, Haojun (Department of Bridge Engineering, Southwest Jiaotong University)
Li, Yongle (Department of Bridge Engineering, Southwest Jiaotong University)
Guo, Junjie (Department of Bridge Engineering, Southwest Jiaotong University)
Liu, Zhanhui (Department of Bridge Engineering, Southwest Jiaotong University)
Publication Information
Wind and Structures / v.32, no.5, 2021 , pp. 423-437 More about this Journal
Abstract
Aerodynamic measures have been widely used for improving the flutter stability of long-span bridges, and this paper focuses their windproof ability to improve the wind environment for vehicles. The whole wind environment around a long-span bridge located in high altitude mountainous areas is first studied. The local wind environment above the deck is then focused by two perspectives. One is the windproof effects of aerodynamic measures, and the other is whether the bridge with aerodynamic measures meets the requirement of flutter stability after installing extra wind barriers in the future. Furthermore, the effects of different wind barriers are analyzed. Results show that aerodynamic measures exert potential effects on the local wind environment, as the vertical stabilizer obviously reduces wind velocities behind it while the closed central slot has limited effects. The suggested aerodynamic measures have the ability to offset the adverse effect of the wind barrier on the flutter stability of the bridge. Behind the wind barrier, wind velocities decrease in general, but in some places incoming flow has to pass through the deck with higher velocities due to the increase in blockage ratio. Further comparison shows that the wind barrier with four bars is optimal.
Keywords
mountainous terrain; wind environment; truss girder; aerodynamic measures; wind barriers; windproof ability; flutter stability;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Li, Y.L., Cai, X.T. and Tang, K. (2011), "Study of spatial distribution feature of wind fields over bridge site with a deep-cutting gorge using numerical simulation", China Civil Eng. J., 44(2), 116-122. https://doi.org/10.15951/j.tmgcxb.2011.02.004.   DOI
2 Li, Y.L., Hu, P., Xu, X.Y. and Qiu, J.J. (2017a), "Wind characteristics at bridge site in a deep-cutting gorge by wind tunnel test", J. Wind Eng. Ind. Aerod., 160, 30-46. https://doi.org/10.1016/j.jweia.2016.11.002.   DOI
3 Li, Y.L., Xu, X.Y., Zhang, M.J. and Xu, Y.L. (2017b), "Wind tunnel test and numerical simulation of wind characteristics at a bridge site in mountainous terrain", Advan. Struct. Eng., 20(8), 223-1231. https://doi.org/10.1177/1369433216673377.   DOI
4 Menter, F.R. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32(8), 1598-1605. https://doi.org/10.2514/3.12149.   DOI
5 Ministry of Communications of the People's Republic of China (2004), "Wind-resistent Design Specification for Highway Bridges (JTG/T D60-01-2004)", China Communications Press, Beijing.
6 Ministry of Transport of the People's Republic of China (2018), Wind-resistent Design Specification for Highway Bridges (JTG/T 3360-01-2018). China Communications Press Co., Ltd., Beijing.
7 Miyata, T. and Yamaguchi, K. (1993), "Aerodynamics of wind effects on the Akashi Kaikyo Bridge", J. Wind Eng. Ind. Aerod., 48, 287-315. https://doi.org/10.1016/0167-6105(93)90142-B.   DOI
8 Tamura, Y., Iwatani, Y., Hibi, K., Suda, K., Nakamura, O., Maruyama, T. and Ishibashi, R. (2007), "Profiles of mean wind speeds and vertical turbulence intensities measured at seashore and two inland sites using Doppler sodars", J. Wind Eng. Ind. Aerod., 95, 411-427. https://doi.org/10.1016/j.jweia.2006.08.005.   DOI
9 Rasouli, A., Hangan, H. and Siddiqui, K. (2009), "PIV measurements for a complex topographic terrain", J. Wind Eng. Ind. Aerod., 97, 242-254. https://doi.org/10.1016/j.jweia.2009.06.010.   DOI
10 Li, M., Sun, Y.G. and Li, M.S. (2018), "Tests for flutter stability measures of a long-span suspension bridge with steel truss girders", J. Vib. Shock, 37(13), 182-189. https://doi.org/10.13465/j.cnki.jvs.2018.13.029.   DOI
11 Tang, H.J., Shum, K.M., Tao, Q.Y. and Jiang, J.S. (2019b), "Vortex-induced vibration of a truss girder with high vertical stabilizers", Advan. Struct. Eng., 22(4), 948-959. https://doi.org/10.1177/1369433218778656.   DOI
12 Aly, M.A. and Joseph, B. (2016), "Aerodynamic mitigation of wind-induced uplift forces on low-rise buildings: A comparative study", J. Build. Eng., 5, 267-276. https://doi.org/10.1016/j.jobe.2016.01.007   DOI
13 Hu, P., Li, Y.L., Xu, G.J., Han, Y., Cai, C.S., Xue, F.R. (2017), "Investigation of the longitudinal wind power spectra at the gorge terrain", Advan. Struct. Eng., 20(11), 1768-1783. https://doi.org/10.1177/1369433217693632.   DOI
14 Ma, L., Zhou, D.J., Han, W.S., Wu, J. and Liu, J.X. (2016), "Transient aerodynamic forces of a vehicle passing through a bridge tower's wake region in crosswind environment", Wind Struct., 22(2), 211-234. https://doi.org/10.12989/was.2016.22.2.211.   DOI
15 Taylor, I.J., Vezza, M. and Salisbury, I. (2008), "Numerical investigation of the effects of pedestrian barriers on aeroelastic stability of a proposed footbridge", J. Wind Eng, Ind. Aerod., 96, 2418-2437. https://doi.org/10.1016/j.jweia.2008.04.004.   DOI
16 Yu, C.J., Li, Y.L., Zhang, M.J., Zhang, Y. and Zhai, G.H. (2019), "Wind characteristics along a bridge catwalk in a deep-cutting gorge from field measurements", J. Wind Eng. Ind. Aerod., 186, 94-104. https://doi.org/10.1016/j.jweia.2018.12.022.   DOI
17 Tang, H.J., Li, Y.L., Wang, Y.F. and Tao, Q.Y. (2017b), "Aerodynamic optimization for flutter performance of steel truss stiffening girder at large angles of attack", J. Wind Eng. Ind. Aerod., 168, 260-270. https://doi.org/10.1016/j.jweia.2017.06.013.   DOI
18 Tang, H.J., Shum, K.M. and Li, Y.L. (2019a), "Investigation of flutter performance of a twin-box bridge girder at large angles of attack", J. Wind Eng. Ind. Aerod., 186, 192-203. https://doi.org/10.1016/j.jweia.2019.01.010.   DOI
19 Tang, H.J., Li, Y.L., Chen, X.Z., Shum, K.M. and Liao, H.L. (2017a), "Flutter performance of central-slotted plate at large angles of attack", Wind Struct., 24(5), 447-464. https://doi.org/10.12989/was.2017.24.5.447.   DOI
20 Buljac, A., Kozmar, H., Pospisil, S. and Machacek, M. (2017a), "Aerodynamic and aeroelastic characteristics of typical bridge decks equipped with wind barriers at the windward bridge-deck edge", Eng. Struct., 137(15), 310-322. https://doi.org/10.1016/j.engstruct.2017.01.055.   DOI
21 Cao, S.Y., Wang, T., Ge, Y.J. and Tamura, Y. (2012), "Numerical study on turbulent boundary layers over two- dimensional hills - Effects of surface roughness and slope", J. Wind Eng. Ind. Aerod., 104-106, 342-349. https://doi.org/10.1016/j.jweia.2012.02.022.   DOI
22 Buljac, A, Kozmar H, Pospisil S, Machacek M. (2017b), "Flutter and galloping of cable-supported bridges with porous wind barriers", J. Wind Eng. Ind. Aerod., 171, 304-318. https://doi.org/ 10.1016/j.jweia.2017.10.012.   DOI
23 Baker, C.J. and Reynolds, S. (1992), "Wind-induced accidents of road vehicles", Accident Anal. Prevention, 24(6), 559-575. https://doi.org/ 10.1016/0001-4575(92)90009-8.   DOI
24 Cao, S.Y. and Tamura, T. (2006), "Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill", J. Wind Eng. Ind. Aerod., 94, 1-19. https://doi.org/10.1016/j.jweia.2005.10.001.   DOI
25 Chen, N., Li, Y.L., Wang, B., Su, Y. and Xiang, H.Y. (2015), "Effects of wind barrier on the safety of vehicles driven on bridges", J. Wind Eng. Ind. Aerod., 143, 113-127. https://doi.org/10.1016/j.jweia.2015.04.021.   DOI
26 Ueda, T., Yasuda, M. and Nakagaki, R. (1990), "Mechanism of aerodynamic stabilization for long-span suspension bridge with stiffening truss-girder", J. Wind Eng. Ind. Aerod., 33, 333- 340. https://doi.org/10.1016/0167-6105(90)90048-H.   DOI
27 Ding, Y.L., Zhou, G.D., Li, A.Q. and Deng, Y. (2013), "Statistical characteristics of sustained wind environment for a long-span bridge based on long-term field measurement data", Wind Struct., 17(1), 43-68. https://doi.org/10.12989/was.2013.17.1.043.   DOI
28 Chu, C.R., Chang, C.Y., Huang, C.J., Wu, T.R., Wang, C.Y. and Liu, M.Y. (2013), "Windbreak protection for road vehicles against crosswind", J. Wind Eng. Ind. Aerod., 116, 61-69. https://doi.org/10.1016/j.jweia.2013.02.001.   DOI
29 Uchida, T. and Ohya, Y. (2003), "Large-eddy simulation of turbulent airflow over complex terrain", J. Wind Eng. Ind. Aerod., 91, 219-229. https://doi.org/10.1016/S0167-6105(02)00347-1.   DOI
30 Wang, H., Li, A.Q., Niu, J., Zong, Z.H. and Li, J. (2013), "Long-term monitoring of wind characteristics at Sutong Bridge site", J. Wind Eng. Ind. Aerod., 115, 39-47. https://doi.org/10.1016/j.jweia.2013.01.006.   DOI
31 Xiang, H.Y., Li, Y.L., Chen, S.R. and Hou, G.Y. (2018), "Wind loads of moving vehicle on bridge with solid wind barrier", Eng. Struct., 156, 188-196. https://doi.org/10.1016/j.engstruct.2017.11.009.   DOI
32 Azzi, Z., Habte, F., Vutukuru, K.S., Chowdhury, A.G. and Moravej, M. (2020), "Effects of roof geometric details on aerodynamic performance of standing seam metal roofs", Eng. Struct., 225, 1-12. https://doi.org/10.1016/j.engstruct.2020.111303.   DOI
33 Abdi, D.S. and Bitsuamlak, G.T. (2016), "Wind flow simulations in idealized and real built environments with models of various level of complexity", Wind Struct., 22(4), 503-524. https://doi.org/10.12989/was.2016.22.4.503.   DOI
34 Aly, M., Chanachock, C. and Raymond, P. (2017), "Retrofitting building roofs with aerodynamic features and solar panels to reduce hurricane damage and enhance eco-friendly energy production", Sustain, Cities Soc., 35, 581-593. https://doi.org/10.1016/j.scs.2017.09.002.   DOI
35 Chen, Z.Q., Ouyang, K.J., Niu, H.W. and Hua, X.G. (2009), "Aerodynamic mechanism of improvement of flutter stability of truss-girder suspension bridge using central stabilizer", China J. Highway Transport, 22(6), 53-59. https://doi.org/10.19721/j.cnki.1001-7372.2009.06.008.   DOI
36 Fenercim, A. and Oiseth, O. and Ronnquist, A. (2017), "Long-term monitoring of wind field characteristics and dynamic response of a long-span suspension bridge in complex terrain", Eng. Struct., 147, 269-284. https://doi.org/10.1016/j.engstruct.2017.05.070.   DOI
37 Kozmar, H., Procino, L., Borsani, A. and Bartoli, G. (2012), "Sheltering efficiency of wind barriers on bridges", J. Wind Eng. Ind. Aerod., 107-108, 274-284. https://doi.org/10.1016/j.jweia.2012.04.027.   DOI
38 He, Y.C., Chan, P.W. and Li, Q.S. (2014), "Field measurements of wind characteristics over hilly terrain within surface layer", Wind Struct., 19(5), 541-563. https://doi.org/ 10.12989/was.2014.19.5.541.   DOI