• Title/Summary/Keyword: wild plant

Search Result 1,249, Processing Time 0.03 seconds

Antioxidant Activity of Asteraceae Plant Seed Extracts (14종 국화과(Asteraceae) 식물 종자 추출물의 항산화 활성)

  • Kim, JunHyeok;Lee, Da Hyun;Lee, Mi Hyun;Jung, Young Ho;Park, Cho Hee;Lee, Hee Ho;Na, Chae Sun
    • Journal of Life Science
    • /
    • v.31 no.6
    • /
    • pp.543-549
    • /
    • 2021
  • Approximately 10% of all angiosperms belong to the Asteraceae family. Plant species belonging to this family have traditionally been used as medicinal plants in the Korean Peninsula. We investigated the antioxidant activity of seed extracts from 14 species belonging to the Asteraceae family. Seeds with ≥ 90% percentage of filled seed and ≥ 50% final germination were used. The total phenolic content was the highest in Dendranthema zawadskii var. tenuisectum (13.5 mg of gallic acid equivalents (GAEs)/g seeds), followed by Dendranthema zawadskii var. latilobum (11.8 mg of GAEs/g seeds), and Callistephus chinensis (11.0 mg of GAEs/g seeds). The total flavonoid content was highest in C. chinensis (9.8 mg of quercetin equivalents (QEs)/g seeds), followed by D. zawadskii var. tenuisectum (7.2 mg of QEs/g seeds) and Taraxacum officinale (6.3 mg of QEs/g seeds). Our results showed that 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activity was highest in D. zawadskii var. tenuisectum (57.4 ㎍/ml), followed by T. officinale (59.1 ㎍/ml) and D. zawadskii var. latilobum (65.0 ㎍/ml), with a half maximal inhibitory concentration (IC50) of DPPH scavenging activity. Furthermore, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity was highest in C. chinensis (26.2 ㎍/ml), followed by D. zawadskii var. tenuisectum (38.4 ㎍/ml), T. officinale (40.2 ㎍/ml), with a half maximal inhibitory concentration (IC50) of ABTS scavenging activity. Based on a cluster analysis according to the antioxidant activity, the 14 species were classified into five groups, with group 4 having the highest antioxidant activity and group 0 having the lowest antioxidant activity. D. zawadskii var. latilobum, D. zawadskii var. tenuisectum, T. officinale, and C. chinensis belonging to groups 3 and 4, exhibited high phenolic content and antioxidant activity and can be considered potent plant-derived natural antioxidants.

Rapid Diagnosis of Resistance to Glufosinate-ammonium in Transgenic Sweet Potato (형질전환 고구마에 대한 Glufosinate-ammonium 저항성 간이진단법)

  • Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.380-389
    • /
    • 2010
  • Transgenic herbicide-resistant sweet potato plants [Ipomoea batatas (L.) Lam.] produced through a biolistic transformation were used in this study. The objective of this research was to find out a rapid and reliable assay method for confirming glufosinate-ammonium resistance. The techniques tested include whole-plant bioassay, one leaf bioassay, and leaf disk bioassay. Parameters investigated in this study were leaf injury and ammonium accumulation at 1 and 5 days after treatment of glufosinate-ammonium. In the leaf disk bioassay, leaf injury of the transgenic line 7171 was 1.9-fold less affected by glufosinate-ammonium than the wild type. The leaf injury of 7171 in one leaf and whole-plant bioassays was 59- and 92-fold less affected by glufosinate-ammonium, respectively, compared with that of the wild type. Leaf disk, one leaf, and whole-plant bioassays showed that ammonium accumulation of the 7171 was 2 to 20-, 4 to 43-, and 6 to 115-fold less affected by 0.5-5 mM glufosinate-ammonium than that of the wild type. All three bioassays successfully distinguished the resistance from the transgenic lines, but one leaf bioassay is the simplest and quickest. Leaf injury and ammonium accumulation were the same in leaves 1, 3, 5, 7, and 10 of 3 mM glufosinate-ammonium treated plants or nontreated plants. The one leaf bioassay was chosen as the standard procedure for future confirmation of resistance in transgenic sweet potato because it is a rapid and reliable assay.

Connection the Rhizomicrobiome and Plant MAPK Gene Expression Response to Pathogenic Fusarium oxysporum in Wild and Cultivated Soybean

  • Chang, Chunling;Xu, Shangqi;Tian, Lei;Shi, Shaohua;Nasir, Fahad;Chen, Deguo;Li, Xiujun;Tian, Chunjie
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.623-634
    • /
    • 2019
  • Little known the connections between soybeans mitogen-activated protein kinase (MAPK) gene expression and the rhizomicrobiome upon invasion of the root pathogen Fusarium oxysporum. To address this lack of knowledge, we assessed the rhizomicrobiome and root transcriptome sequencing of wild and cultivated soybean during the invasion of F. oxysporum. Results indicated F. oxysporum infection enriched Bradyrhizobium spp. and Glomus spp. and induced the expression of more MAPKs in the wild soybean than cultivated soybean. MAPK gene expression was positively correlated with Pseudomonadaceae but negatively correlated with Sphingomonadaceae and Glomeraceae in both cultivated and wild soybean. Specifically, correlation profiles revealed that Pseudomonadaceae was especially correlated with the induced expression of GmMAKKK13-2 (Glyma.14G195300) and GmMAPK3-2 (Glyma.12G073000) in wild and cultivated soybean during F. oxysporum invasion. Main fungal group Glomeraceae was positively correlated with GmMAPKKK14-1 (Glyma.18G060900) and negatively correlated with GmRaf6-4 (Glyma.02G215300) in the wild soybean response to pathogen infection; while there were positive correlations between Hypocreaceae and GmMAPK3-2 (Glyma.12G073000) and between Glomeraceae and GmRaf49-3 (Glyma.06G055300) in the wild soybean response, these correlations were strongly negative in the response of cultivated soybean to F. oxysporum. Taken together, MAPKs correlated with different rhizomicrobiomes indicating the host plant modulated by the host self-immune systems in response to F. oxysporum.

A Two-Strain Mixture of Rhizobacteria Elicits Induction of Systemic Resistance Against Pseudomonas syringae and Cucumber Mosaic Virus Coupled to Promotion of Plant Growth on Arabidopsis thaliana

  • Ryu Choong-Min;Murphy John F.;Reddy M.S.;Kloepper Joseph W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.280-286
    • /
    • 2007
  • We evaluated a commercial biopreparation of plant growth-promoting rhizobacteria (PGPR) strains Bacillus subtilis GB03 and B. amyloliquefaciens IN937a formulated with the carrier chitosan (Bio Yield) for its capacity to elicit growth promotion and induced systemic resistance against infection by Cucumber Mosaic Virus (CMV) and Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana. The biopreparation promoted plant growth of Arabidopsis hormonal mutants, which included auxin, gibberellic acid, ethylene, jasmonate, salicylic acid, and brassinosteroid insensitive lines as well as each wild-type. The biopreparation protected plants against CMV based on disease severity in wild-type plants. However, virus titre was not lower in control plants and those treated with biopreparation, suggesting that the biopreparation induced tolerance rather than resistance against CMV. Interestingly, the biopreparation induced resistance against CMV in NahG plants, as evidenced by both reduced disease severity and virus titer. The biopreparation also elicited induced resistance against P. syringae pv. tomato in the wild-type but not in NahG transgenic plants, which degrade endogenous salicylic acid, indicating the involvement of salicylic acid signaling. Our results indicate that some PGPR strains can elicit plant growth promotion by mechanisms that are different from known hormonal signaling pathways. In addition, the mechanism for elicitation of induced resistance by PGPR may be pathogen-dependent. Collectively, the two-Bacilli strain mixture can be utilized as a biological inoculant for both protection of plant against bacterial and viral pathogens and enhancement of plant growth.