Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.6.543

Antioxidant Activity of Asteraceae Plant Seed Extracts  

Kim, JunHyeok (Division of Wild Plant Seeds Research, Baekdudaegan National Arboretum)
Lee, Da Hyun (Division of Wild Plant Seeds Research, Baekdudaegan National Arboretum)
Lee, Mi Hyun (Division of Wild Plant Seeds Research, Baekdudaegan National Arboretum)
Jung, Young Ho (Division of Wild Plant Seeds Research, Baekdudaegan National Arboretum)
Park, Cho Hee (Division of Wild Plant Seeds Research, Baekdudaegan National Arboretum)
Lee, Hee Ho (Division of Wild Plant Seeds Research, Baekdudaegan National Arboretum)
Na, Chae Sun (Division of Wild Plant Seeds Research, Baekdudaegan National Arboretum)
Publication Information
Journal of Life Science / v.31, no.6, 2021 , pp. 543-549 More about this Journal
Abstract
Approximately 10% of all angiosperms belong to the Asteraceae family. Plant species belonging to this family have traditionally been used as medicinal plants in the Korean Peninsula. We investigated the antioxidant activity of seed extracts from 14 species belonging to the Asteraceae family. Seeds with ≥ 90% percentage of filled seed and ≥ 50% final germination were used. The total phenolic content was the highest in Dendranthema zawadskii var. tenuisectum (13.5 mg of gallic acid equivalents (GAEs)/g seeds), followed by Dendranthema zawadskii var. latilobum (11.8 mg of GAEs/g seeds), and Callistephus chinensis (11.0 mg of GAEs/g seeds). The total flavonoid content was highest in C. chinensis (9.8 mg of quercetin equivalents (QEs)/g seeds), followed by D. zawadskii var. tenuisectum (7.2 mg of QEs/g seeds) and Taraxacum officinale (6.3 mg of QEs/g seeds). Our results showed that 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activity was highest in D. zawadskii var. tenuisectum (57.4 ㎍/ml), followed by T. officinale (59.1 ㎍/ml) and D. zawadskii var. latilobum (65.0 ㎍/ml), with a half maximal inhibitory concentration (IC50) of DPPH scavenging activity. Furthermore, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity was highest in C. chinensis (26.2 ㎍/ml), followed by D. zawadskii var. tenuisectum (38.4 ㎍/ml), T. officinale (40.2 ㎍/ml), with a half maximal inhibitory concentration (IC50) of ABTS scavenging activity. Based on a cluster analysis according to the antioxidant activity, the 14 species were classified into five groups, with group 4 having the highest antioxidant activity and group 0 having the lowest antioxidant activity. D. zawadskii var. latilobum, D. zawadskii var. tenuisectum, T. officinale, and C. chinensis belonging to groups 3 and 4, exhibited high phenolic content and antioxidant activity and can be considered potent plant-derived natural antioxidants.
Keywords
Antioxidant; Asteraceae; conservation; germination; wild plant seed;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dezfuli, P. M., Sharif-Zadeh, F. and Janmohammadi, M. 2008. Influence of priming techniques on seed germination behavior of maize inbred lines (Zea mays L.). Am. J. Agric. Biol. Sci. 3, 22-25.
2 Kim, S. Y., Lee, M. H. and Park, S. N. 2010. Evaluations of antioxidative activity and whitening effect of extracts from different parts of Cosmos bipinnatus. J. Kor. Appl. Sci. Technol. 27, 559-567.
3 Korean National Arboretum. 2021. Korea Biodiversity Information System. http://www.nature.go.kr. Assessed 9 June 2021.
4 Na, M. K., An, R. B., Jin, W. Y., Min, B. S., Yoo, J. K., Kim, Y. H. and Bae, K. H. 2003. Antioxidant effects of plant extracts on free radicals and lipid peroxidation. Nat. Prod. Sci. 9, 226-231.
5 Wani, M. A., Khan, F. U., Nazki, I. T., Din, A., Iqbal, S. and Qadri, Z. A. 2019. Influence of various treatments on pre and post germination properties of Callistephus chinensis(L.) NEES cv. Powderpuff. Bangladesh J. Bot. 48, 449-455.   DOI
6 Funk, V. A., Susanna, A., Steussy, T. F. and Robinson, H. E. 2009. Systematics, evolution, and biogeography of Compositae, pp. 171, International Association for Plant Taxonomy: Bratislava, Slovakia.
7 Ainsworth, E. A. and Gillespie, K. M. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2, 875-877.   DOI
8 Chang, C. C., Yang, M. H., Wen, H. M. and Chern, J. C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10, 178-182.
9 Cho, H. D., Kang, W. S., Kim, D. H., Ku, J. J. and Seo, K. I. 2019. Comparison of biological activity between Stellaria aquatica seed extracts. Kor. J. Food Preserv. 26, 228-237.   DOI
10 Elfalleh, W., Hannachi, H., Tlili, N., Yahia, Y., Nasri, N. and Ferchichi, A. 2012. Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. J. Med. Plant Res. 6, 4724-4730.
11 Graf, B. A., Milbury, P. E. and Blumberg, J. B. 2005. Flavonols, flavones, flavanones, and human health: epidemiological evidence. J. Med. Food 8, 281-290.   DOI
12 Lee, S. E., Sung, J. S., Jang, I. B., Kim, G. S., Ahn, T. J., Han, H. S., Kim, J. E., Kim, Y. O., Park, C. B., Cha, S. W., Ahn, Y. S., Park, H. K., Band, J. K. and Ahn, Y. S. 2008. Investigation on antioxidant activity in plant resources. Kor. J. Med. Crop Sci. 16, 356-370.
13 Hudec, J., Burdova, M., Kobida, L. U., Komora, L., Macho, V., Kogan, G., Turianica, I., Kochanova, R., Lozek, O., Haban, M. and Chlebo, P. 2007. Antioxidant capacity changes and phenolic profile of Echinacea purpurea, nettle (Urtica dioica L.), and dandelion (Taraxacum officinale) after application of polyamine and phenolic biosynthesis regulators. J. Agric. Food Chem. 55, 5689-5696.   DOI
14 Jo, H. J., Chung, K. H., Yoon, J. A., Song, B. C. and An, J. H. 2014. Free radical scavenging activities of amaranth (Amaranthus spp. L.) seed extracts. Food Eng. Prog. 18, 116-123.   DOI
15 Jeong, J. A., Kwon, S. H., Kim, Y. J., Shin, C. S. and Lee, C. H. 2007. Investigation of antioxidative and tryosinase inhibitory activities of the seed extracts. Kor. J. Plant Res. 20, 177-184.
16 Funk, V. A., Bayer, R. J., Keeley, S., Chan, R., Watson, L., Gemeinholzer, B., Schilling, E., Panero, J. L., Baldwin, B. G., Garcia-Jacas, N., Susanna, A. and Jansen, R. K. 2005. Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biol. Skr. 55, 343-374.
17 Benz, C. C. and Yau, C. 2008. Ageing, oxidative stress and cancer: paradigms in parallax. Nat. Rev. Cancer 8, 875-879.   DOI
18 Kew, R. B. G. 2017. Seed information database (SID), ver. 7.1.
19 Kim, Y. J., Kim, S. E., Lee, H. S., Hong, S. Y., Kim, S. E., Kim, Y. J., Lee J. H., Park, S. J., Kim, J. H., Park, Y. J. and Kim, H. K. 2016. Comparison of linarin content and biological activity in ethanol extraction of Chrysanthemum zawadskii. J. Kor. Soc. Food Sci. Nutr. 45, 1414-1421.   DOI
20 Korean National Arboretum. 2017. Ethnobotany in Korea: The traditional knowledge and use of indigenous plants. pp. 7, Korean National Arboretum: Pocheon-si, Gyeonggi-do, Korea.
21 Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S. and Kalayci, O. 2012. Oxidative stress and antioxidant defense. World Allergy Organ. J. 5, 9-19.   DOI
22 Woo, J. H., Shin, S. L. and Lee, C. H. 2010. Antioxidant effects of ethanol extracts from flower species of plant. J. Kor. Soc. Food Sci. Nutr. 39, 159-164.   DOI
23 You, S. H. and Moon, J. S. 2016. A study on anti-oxidative, anti-inflammatory, and melanin inhibitory effects of chrysanthemum sibiricum extract. J. Kor. Appl. Sci. Technol. 33, 762-770.
24 Molyneux, P. 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 26, 211-219.
25 Alam, M. N., Bristi, N. J. and Rafiquzzaman, M. 2013. Review on in vivo and in vitro methods evaluation of anti-oxidant activity. Saudi Pharm. J. 21, 143-152.   DOI
26 Arts, I. C. and Hollman, P. C. 2005. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 81, 317S-325S.   DOI
27 Chae, I. G., Kim, H. J., Yu, M. H., Kim, H. I. and Lee, I. S. 2010. Antioxidant and antibacterial activity of commercially available herbs in Korean markets. J. Kor. Soc. Food Sci. Nutr. 39, 1411-1417.   DOI
28 Pellegrini, N., Re, R., Yang R. M. and Rice-Evans, C. 1999. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Method Enzymol. 299, 379-389.   DOI
29 Soccio, M., Laus, M. N., Alfarano, M., Dalfino, G., Panunzio, M. F. and Pastore, D. 2018. Antioxidant/Oxidant Balance as a novel approach to evaluate the effect on serum of long-term intake of plant antioxidant-rich foods. J. Funct. Foods 40, 778-784.   DOI