• Title/Summary/Keyword: wild cat

Search Result 75, Processing Time 0.028 seconds

A study on Furs and Feltry from Ancient to Koryo Korea (고대부터 고려까지 모피물에 관한 고찰)

  • 이춘주
    • Journal of the Korean Society of Costume
    • /
    • v.22
    • /
    • pp.193-204
    • /
    • 1994
  • In this study the characteristics of Korean furs and peltry were discussed in the terms of usage and kinds from the literature survey of the relevant references, The following con-clusions were deduced. From Ancient to Koryo a kind of acient of Korea a lot of furs and peltry were produced and dressed. The leopad of Gochosun Korea was worthy of gold as an expensive goods to China. red dyed pelt of Silla Korea was traded with China and that pelt dyeing tech-nology of that pelt developed. The marten of Koryo was trade to Arabia and an otter skin to Kum Dynasty as loved goods. Korean furs and peltry made a reputation and were used for trading goods with China Japan and Arabia. Tratment technology in Korea became known to foreign country. There is another record that sheep and camels were offered to Koryo by around countries, And that Koryo employed men of Kum Dynasty as a shepherd. From ancient to Koryo Korea had had many kinds of furs of peltry as using goods such as leopard mart otter skin panther bear, manchurian wapili, fox, porpoise rat, mankey, horse, pig, wild bear, goat, cow, cat, dog, tiger, deer, raccoon dog and so on.

  • PDF

Enhancement of cis,cis-Muconate Productivity by Overexpression of Catechol 1,2-Dioxygenase in Pseudomonas putida BCM114

  • Kim, Beum-Jun;Park, Won-Jae;Lee, Eun-Yeol;Park, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.112-114
    • /
    • 1998
  • For enhancement of cis,cis-muconate productivity from benzoate, catechol 1,2-dioxygenase (C12O) which catalyzes the rate-limiting step (catechol conversion to cis,cis-muconate) was cloned and expressed in recombinant Pseudomonas putida BCM114. At higher benzoate concentrations (more than 15 mM), cis,cis-muconate productivity gradually decreased and unconverted catechol was accumulated up to 10 mM in the cae of wild-type P. putida BM014, whereas cis,cis-muconate productivity continuously increased and catechol was completely transformed to cis,cis-muconate for P. putida BCM114. Specific C12O activity of P. putida BCM114 was about three times higher than that of P. putida BM014, and productivity was enhanced more than two times.

  • PDF

Ahnak-knockout mice show susceptibility to Bartonella henselae infection because of CD4+ T cell inactivation and decreased cytokine secretion

  • Choi, Eun Wha;Lee, Hee Woo;Lee, Jun Sik;Kim, Il Yong;Shin, Jae Hoon;Seong, Je Kyung
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.289-294
    • /
    • 2019
  • The present study evaluated the role of AHNAK in Bartonella henselae infection. Mice were intraperitoneally inoculated with $2{\times}10^8$ colony-forming units of B. henselae Houston-1 on day 0 and subsequently on day 10. Blood and tissue samples of the mice were collected 8 days after the final B. henselae injection. B. henselae infection in the liver of Ahnak-knockout and wild-type mice was confirmed by performing polymerase chain reaction, with Bartonella adhesion A as a marker. The proportion of B. henselae-infected cells increased in the liver of the Ahnak-knockout mice. Granulomatous lesions, inflammatory cytokine levels, and liver enzyme levels were also higher in the liver of the Ahnak-knockout mice than in the liver of the wild-type mice, indicating that Ahnak deletion accelerated B. henselae infection. The proportion of CD4+interferon-${\gamma}$ ($IFN-{\gamma}^+$) and $CD4^+$ interleukin $(IL)-4^+$ cells was significantly lower in the B. henselae-infected Ahnak-knockout mice than in the B. henselae-infected wild-type mice. In vitro stimulation with B. henselae significantly increased $IFN-{\gamma}$ and IL-4 secretion in the splenocytes obtained from the B. henselae-infected wild-type mice, but did not increase $IFN-{\gamma}$ and IL-4 secretion in the splenocytes obtained from the B. henselae-infected Ahnak-KO mice. In contrast, $IL-1{\alpha}$, $IL-1{\beta}$, IL-6, IL-10, RANTES, and tumor necrosis $factor-{\alpha}$ secretion was significantly elevated in the splenocytes obtained from both B. henselae-infected wild-type and Ahnak-knockout mice. These results indicate that Ahnak deletion promotes B. henselae infection. Impaired $IFN-{\gamma}$ and IL-4 secretion in the Ahnak-knockout mice suggests the impairment of Th1 and Th2 immunity in these mice.

Enhancement of the solubility of human tissue inhibitor of matrix metallocroteinase-2 (TIMP-2) in E. coli using a modified in vitro mutagenesis (새로운 유전자 재조합 방법을 이용한 대장균에서의 인간 tissue inhibitor of mtrix metalloproteinase-2 (TIMP-2) 유전자의 가용성 발현)

  • Kim, Jong-Uk;Choi, Dong-Soon;Joo, Hyun;Min, Churl-K.
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • The second family member of tissue inhibitors of matrix metalloproteinases, TIMP-2, is a 21kDa protein which inhibits matrix metalloproteinases 2 (MMP-2). Expression of mammalian proteins in E. coli often forms inclusion bodies that are made up of mis-folded or insoluble protein aggregates. The requirement for the formation of 6 disulfide bonds in the process of the TIMP-2 folding is likely to be incompatible with the reducing environment of E. coli. However, this incompatibility can be often overcome by introducing a mutagenesis that could lead to enhancement of the protein solubility. In this reason, we have attempted to express the soluble TIMP-2 in E. coli by applying a modified staggered extension process (StEP), one of the in vitro PCR-based recombinant mutagenesis methods, and error-prone PCR. C-terminally located CAT fusion protein with respect to mutated TIMP-2 proteins enables us to differentiate the soluble TIMP-2 from the insoluble in E. coli by virtue of chloramphenicol resistance. According to this scheme, E. coli harboring properly-folded CAT fused to TIMP-2 protein was selected, and some of the resulting colonies exhibited an enhanced, soluble expression of TIMP-2 compared to the wild type, implying (i) the StEP technique is successfully employed to enhance the proper folding thereby increasing the solubility of TIMP-2, and (ii) the CAT dependent screening may be a simple and effective method to differentiate the soluble protein expression in E. coli.

Eco-corridor Positioning for Target Species - By Field Surveying of Mammals' Road-Kill - (목표종 생태통로의 위치선정 -포유류 Road-kill 현장조사를 중심으로-)

  • Lee, Yong-Wook;Lee, Myeong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.51-58
    • /
    • 2006
  • The purpose of this research presents a method to position and makes the structure for eco-corridors reasonably with collectable analysing results of various effects shown in mammals' road-kill at 429 points. Target animals of this research are Leopard cat, Siberian weasel, Raccoon dog, Korean hare, Eurasian red squirrel, Siberian chipmunk and Water deer. The results derived from the empirical analysis on the contents above are followed. First, according to the results as for Leopard cat road kill analysis, which is designated as Endangered Species Class II, the eco-corridor might be located at near village having stead food in order to decrease the frequencies of road-kill, because its road kill points were mainly collected at 4 lane hilly road with mountain-road-farm area geological type of. Second, because Siberian weasel's road kill was detected at 2 lane hilly road with mountain-road-stream geological type, the eco-corridor might be located at near a mill to decrease road-kill frequencies. Third, the road-kill frequency of Eurasian red squirrel can be reduced when the eco-corridor is located at the area across coniferous tree near 4 lane west sea freeway with mountain-road-mountain. Fourth, the road-kill of Raccoon dog can be reduced when the eco-corridor is located at 4 lane mountain road or hilly road with the geological type having farm land-road-mountain(stream). Fifth, Korean hare's road-kill can be reduced when the eco-corridor is located at grass land across ridge line of mountain, because wild rabbit road kill was happened at 4 lane mountain road or 2 lane mountain road(mountain-road-mountain). Sixth, As for Siberian chipmunk, the eco-corridor might be located at the side slope of mountain road at 2 lane mountain road under the speed of 60km/h with mountain-road-mountain. Seventh, For Water deer, the eco-corridor might be located at 4 lane hilly road with mountain-road-farm land. As for Common otter, Amur hedgehog, Yellow-throated marten, Weasel, it is difficult to specify the proper site of eco-corridor due to the lack of data. Eco-corridors for carnivores might be well located at 4 lane hilly road or 2 lane hilly road with mountain-road-farm land, and the track for herbivores might be well located as a overhead bridge on mountain-road-mountain type across mountains. In order to position eco-corridors for wildlife properly, we have to research animal's behavior with ecological background, and to consider the local uniqueness and regularly collect the empirical road-kill data in long term 3 to 5 year, which can be the foundation for the more suitable place of wild life eco-corridors.

Contribution of Arginine 13 to the Catalytic Activity of Human Class Pi Glutathione Transferase P1-1

  • Kong, Ji-Na;Jo, Dong-Hyeon;Do, Hyun-Dong;Lee, Jin-Ju;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2497-2502
    • /
    • 2010
  • Arg13 is a conserved active-site residue in all known Pi class glutathione S-transferases (GSTs) and in most Alpha class GSTs. To evaluate its contribution to substrate binding and catalysis of this residue, three mutants (R13A, R13K, and R13L) were expressed in Escherichia coli and purified by GSH affinity chromatography. The substitutions of Arg13 significantly affected GSH-conjugation activity, while scarcely affecting glutathione peroxidase or steroid isomerase activities. Mutation of Arg13 into Ala largely reduced the GSH-conjugation activity by approximately 85 - 95%, whereas substitutions by Lys and Leu barely affected activity. These results suggest that, in the GSH-conjugation activity of hGST P1-1, the contribution of Arg13 toward catalytic activity is highly dependent on substrate specificities and the size of the side chain at position 13. From the kinetic parameters, introduction of larger side chains at position 13 results in stronger affinity (Leu > Lys, Arg > Ala) towards GSH. The substitutions of Arg13 with alanine and leucine significantly affected $k_{cat}$, whereas substitution with Lys was similar to that of the wild type, indicating the significance of a positively charged residue at position 13. From the plots of log ($k_{cat}/{K_m}^{CDNB}$) against pH, the $pK_a$ values of the thiol group of GSH bound in R13A, R13K, and R13L were estimated to be 1.8, 1.4, and 1.8 pK units higher than the $pK_a$ value of the wild-type enzyme, demonstrating the contribution of the Arg13 guanidinium group to the electrostatic field in the active site. From these results, we suggest that contribution of Arg13 in substrate binding is highly dependent on the nature of the electrophilic substrates, while in the catalytic mechanism, it stabilizes the GSH thiolate through hydrogen bonding.

One-Stage Treatment of Chronic Calcaneal Osteomyelitis with Bone Morphogenetic Protein 2 and Local Antibiotic Delivery in a Cat

  • Kim, Hyungkyoo;Jeong, Heejun;Park, Chul;So, Kyung-Min;Park, Jiyoung;Jeong, Seong Mok;Lee, Haebeom
    • Journal of Veterinary Clinics
    • /
    • v.33 no.5
    • /
    • pp.300-303
    • /
    • 2016
  • An age-unknown, 4.8 kg, male, wild, domestic short-hair cat was presented for left hindlimb lameness. A physical examination revealed a draining tract which was suspected of bite on left calcaneal bone. The left tarsal joint was markedly swollen and exudates were observed around the draining tract. Sequestrum at left calcaneus bone, and osteolysis were identified by radiography. The sequestrum and its surrounding exudative tissue were debrided during surgery and the tissue was submitted for bacterial culture and sensitivity test. The debridement caused a bone defect ($1.5cm{\times}0.5cm{\times}0.5cm$) on the medial left calcaneal bone. Plate and screw fixation was performed to the calcaneus bone as buttress plate. Recombinant human bone morphogenetic protein-2 (rhBMP-2) loaded hydroxyapatite was implanted in the bone defect. Furthermore, Amikacin-impregnated collagen sponges were also placed around bone plate to deliver local antibiotics. A systemic antibiotic treatment regimen based on bacterial culture and sensitivity test results was administered for 4 weeks. The wound properly healed without any signs of infection, and the bone healing was confirmed by radiography. The patient showed normal weight bearing ambulation at 18 weeks after surgery. The use of rhBMP-2 and local antibiotic delivery system is a good surgical option for the one-stage treatment of chronic osteomyelitis.

Protein Engineering of Flavin-containing Monooxygenase from Corynebacterium glutamicum for Improved Production of Indigo and Indirubin (인디고와 인디루빈의 생산을 증대하기 위한 플라빈-함유 모노옥시게나제의 단백질공학)

  • Jung, Hye Sook;Jung, Hae Bin;Kim, Hee Sook;Kim, Chang Gyeom;Lee, Jin Ho
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.656-662
    • /
    • 2018
  • Flavin-containing monooxygenases from Corynebacterium (cFMOs) were mutagenized based on homology modeling to develop variants with an enhanced indigoid production capability. The four mutants, F170Y, A210G, A210S, and T326S, which fused to a maltose-binding protein (MBP), were constructed, and their biochemical properties were characterized. Of these, purified MBP-T326S required a higher concentration of exogenous FAD (100 mM) than the wild-type MBP-cFMO for optimal activity and showed a 3.8-fold increase in the $k_{cat}/K_m$ value at $100{\mu}M$ FAD compared to that of MBP-cFMO at $2{\mu}M$ FAD. The indole oxygenase activities of MBP-T326S decreased to 63-77% compared to that of the MBP-cFMO In addition, MBP-T326S displayed a very low level of futile NADPH oxidase activities (21-24%) in the absence of a substrate. Mutant proteins except for T326S displayed similar $K_m$ and increased $k_{cat}/K_m$ values compared to the wild-type. MBP-F170Y and -A210S mutants showed elevated indole oxygenase activity higher than 3.1- and 2.9-fold, respectively, in comparison with MBP-cFMO. When indigoid production was carried out in LB broth with 2.5 g/l of tryptophan, Escherichia coli expressing cFMO produced 684 mg/l of indigo and 104 mg/l of indirubin, while cells harboring T326S produced 1,040 mg/l of indigo and 112 mg/l of indirubin. The results indicate that the production of indigo was 13% higher when compared to a previous report in which an E. coli expressing FMO from Methylophaga produced 920 mg/l of indigo. The protein engineering of cFMO based on homology modeling provided a more rational strategy for developing indigoid-producing strains.

Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34

  • Lee, Byung Dae;Dutta, Swarnalee;Ryu, Hojin;Yoo, Sung-Je;Suh, Dong-Sang;Park, Kyungseok
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.213-220
    • /
    • 2015
  • Background: Korean ginseng (Panax ginseng Meyer) is a perennial herb prone to various root diseases, with Phytophthora cactorum being considered one of the most dreaded pathogens. P. cactorum causes foliar blight and root rot. Although chemical pesticides are available for disease control, attention has been shifted to viable, eco-friendly, and cost-effective biological means such as plant growth-promoting rhizobacteria (PGPR) for control of diseases. Methods: Native Bacillus amyloliquefaciens strain HK34 was isolated from wild ginseng and assessed as a biological control agent for ginseng. Leaves from plants treated with HK34 were analyzed for induced systemic resistance (ISR) against P. cactorum in square plate assay. Treated plants were verified for differential expression of defense-related marker genes using quantitative reverse transcription polymerase chain reaction. Results: A total of 78 native rhizosphere bacilli from wild P. ginseng were isolated. One of the root-associated bacteria identified as B. amyloliquefaciens strain HK34 effectively induced resistance against P. cactorum when applied as soil drench once (99.1% disease control) and as a priming treatment two times in the early stages (83.9% disease control). A similar result was observed in the leaf samples of plants under field conditions, where the percentage of disease control was 85.6%. Significant upregulation of the genes PgPR10, PgPR5, and PgCAT in the leaves of plants treated with HK34 was observed against P. cactorum compared with untreated controls and only pathogen-treated plants. Conclusion: The results of this study indicate HK34 as a potential biocontrol agent eliciting ISR in ginseng against P. cactorum.

Improvement of Enzymatic Stability and Catalytic Efficiency of Recombinant Fusariumoxysporum Trypsin with Different N-Terminal Residues Produced by Pichiapastoris

  • Yang, Ning;Ling, Zhenmin;Peng, Liang;Liu, Yanlai;Liu, Pu;Zhang, Kai;Aman, Aman;Shi, Juanjuan;Li, Xiangkai
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1482-1492
    • /
    • 2018
  • Fusarium oxysporum trypsin (FOT) is a fungal serine protease similar to mammal trypsin. The FOT could be successfully expressed in Pichiapastoris by engineering the natural propeptide APQEIPN. In this study, we constructed two recombinant enzymes with engineered amino acid sequences added to the N-terminus of FOT and expressed in P. pastoris. The N-terminal residues had various effects on the structural and functional properties of trypsin. The FOT, and the recombinants TE (with peptide YVEF) and TS (with peptide YV) displayed the same optimum temperature ($40^{\circ}C$) and pH (8.0). However, the combinants TE and TS showed significantly increased thermal stability at $40^{\circ}C$ and $50^{\circ}C$. Moreover, the combinants TE and TS also showed enhanced tolerance of alkaline pH conditions. Compared with those of wild-type FOT, the intramolecular hydrogen bonds and the cation ${\pi}$-interactions of the recombinants TE and TS were significantly increased. The recombinants TE and TS also had significantly increased catalytic efficiencies (referring to the specificity constant, $k_{cat}/K_m$), 1.75-fold and 1.23-fold than wild-type FOT. In silico modeling analysis uncovered that the introduction of the peptides YVEF and YV resulted in shorter distances between the substrate binding pocket (D174, G198, and G208) and catalytic triad (His42, Asp102, and Ser180), which would improve the electron transfer rate and catalytic efficiency. In addition, N-terminal residues modification described here may be a useful approach for improving the catalytic efficiencies and characteristics of other target enzymes.