Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.9.2497

Contribution of Arginine 13 to the Catalytic Activity of Human Class Pi Glutathione Transferase P1-1  

Kong, Ji-Na (Biomolecular Chemistry Lab, Department of Chemistry, College of Sciences, Chung-Ang University)
Jo, Dong-Hyeon (Biomolecular Chemistry Lab, Department of Chemistry, College of Sciences, Chung-Ang University)
Do, Hyun-Dong (Biomolecular Chemistry Lab, Department of Chemistry, College of Sciences, Chung-Ang University)
Lee, Jin-Ju (Biomolecular Chemistry Lab, Department of Chemistry, College of Sciences, Chung-Ang University)
Kong, Kwang-Hoon (Biomolecular Chemistry Lab, Department of Chemistry, College of Sciences, Chung-Ang University)
Publication Information
Abstract
Arg13 is a conserved active-site residue in all known Pi class glutathione S-transferases (GSTs) and in most Alpha class GSTs. To evaluate its contribution to substrate binding and catalysis of this residue, three mutants (R13A, R13K, and R13L) were expressed in Escherichia coli and purified by GSH affinity chromatography. The substitutions of Arg13 significantly affected GSH-conjugation activity, while scarcely affecting glutathione peroxidase or steroid isomerase activities. Mutation of Arg13 into Ala largely reduced the GSH-conjugation activity by approximately 85 - 95%, whereas substitutions by Lys and Leu barely affected activity. These results suggest that, in the GSH-conjugation activity of hGST P1-1, the contribution of Arg13 toward catalytic activity is highly dependent on substrate specificities and the size of the side chain at position 13. From the kinetic parameters, introduction of larger side chains at position 13 results in stronger affinity (Leu > Lys, Arg > Ala) towards GSH. The substitutions of Arg13 with alanine and leucine significantly affected $k_{cat}$, whereas substitution with Lys was similar to that of the wild type, indicating the significance of a positively charged residue at position 13. From the plots of log ($k_{cat}/{K_m}^{CDNB}$) against pH, the $pK_a$ values of the thiol group of GSH bound in R13A, R13K, and R13L were estimated to be 1.8, 1.4, and 1.8 pK units higher than the $pK_a$ value of the wild-type enzyme, demonstrating the contribution of the Arg13 guanidinium group to the electrostatic field in the active site. From these results, we suggest that contribution of Arg13 in substrate binding is highly dependent on the nature of the electrophilic substrates, while in the catalytic mechanism, it stabilizes the GSH thiolate through hydrogen bonding.
Keywords
Arginine 13 residue; Glutathione S-transferase; Kinetic parameters; Site-directed mutagenesis; Substrate specificity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Koh, J.-U.; Cho, H.-Y.; Kong, K.-H. Bull. Korean Chem. Soc. 2007, 28, 772.   DOI
2 Schramm, V. L.; McCluskey, R.; Emig, F. A.; Litwack, G. J. Biol. Chem. 1984, 259, 714.
3 Kano, T.; Sakai, M.; Muramatsu, M. Cancer Res. 1987, 47, 5626.
4 Kong, K.-H.; Inoue, H.; Takahashi, K. Biochem. Biophys. Res. Commun. 1991, 181, 748.   DOI
5 Habig, W. H.; Jakoby, W. B. Methods Enzymol. 1981, 77, 398.   DOI
6 Flohe, L.; Günzler, W. A. Methods. Enzymol. 1985, 105, 114.
7 Parker, M. W.; Bello, M. L.; Federici, G. J. Mol. Biol. 1990, 213, 221.   DOI
8 Chen, W.-L.; Haieh, J.-C.; Hong, J.-L.; Tsai, S.-P.; Tam, M. F. Biochem. J. 1992, 286, 205.
9 Kong, K.-H.; Takasu, K.; Inoue, H.; Takahashi, K. Biochem. Biophys. Res. Commun. 1992, 184, 194.   DOI
10 Tsuchida, S.; Sato, K. CRC Crit. Rev. Biochem. Mol. Biol. 1992, 27, 337.   DOI
11 Hayes, J. D.; Pulford, D. J. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 445.   DOI
12 Wilce, M. C. J.; Board, P. G.; Feil, S. C.; Parker, M. W. EMBO J. 1995, 14, 2133.
13 Reinemer, P.; Dirr, H. W.; Ladenstein, R.; Huber, R. J. Mol. Biol. 1992, 217, 214.
14 Ji, X.; Tordova, M.; O’Donnell, R.; Parsons, J. F.; Hayden, J. B.; Gilliland, G. L.; Zimniak, P. Biochemistry 1997, 36, 9690.   DOI
15 Ji, X.; Blaszczyk, J.; Xiao, B.; O’Donnell, R.; Hu, X.; Herzog, C.; Singh, S. V.; Zimniak, P. Biochemistry 1999, 38, 10231.   DOI
16 Nishihira, J.; Ishibashi, T.; Sakai, M.; Tsuda, S.; Hikichi, K. Arch. Biochem. Biophys. 1993, 302, 128.   DOI
17 Bjornestedt, R.; Stenberg, G.; Widersten, M.; Board, P. G.; Sinning, I.; Jones, T. A.; Mannervik, B. J. Mol. Biol. 1995, 765.
18 Morgan, A. S.; Ciaccio, P. J.; Tew, K. D.; Kauvar, L. M. Cancer Chemother. Pharmacol. 1996, 37, 363.   DOI
19 Mannervik, B. Adv. Enzymol. Rel. Areas Mol. Biol. 1985, 57, 357.
20 Ketterer, B.; Tan, K. H.; Meyer, D. J.; Coles, B. In Glutahtione STransferase and Carcinogenesis; Taylor & Frabcis: London, 1987; p 149.
21 Oakley, A. J.; Rossjohn, J.; Bello, M. L.; Caccuri, A. M.; Federici, G.; Paker, M. W. Biochemistry 1997, 36, 576.   DOI
22 Mannervik, B.; Danielson, U. H. CRC Crit. Rev. Biochem. 1988, 23, 283.   DOI
23 Fahey, R. C.; Sundquist, A. R. Adv. Enzymol. Rel. Areas Mol. Biol. 1991, 64, 1.
24 Armstrong, R. N. Chem. Res. Toxicol. 1991, 4, 131.   DOI
25 Armstrong, R. N. Chem. Res. Toxicol. 1997, 10, 2.   DOI
26 Mannervik, B.; Awasthi, Y. C.; Board, P. G.; Hayes, J. D.; Ilio, C.; Ketterer, B.; Listowsky, I.; Morgenstern, R.; Muramatsu, M.; Pearson, W. R.; Pickett, C. B.; Sato, K.; Widersten, M.; Wolf, C. R. Biochem. J. 1992, 282, 305.
27 Ji, X.; Zhang, P.; Armstrong, R. N.; Gilliland, G. L. Biochemistry 1992, 31, 10169.   DOI
28 Ji, X.; Von Rosenvinge, E. C.; Johnson, W. W.; Tomarev, S. I.; Piatigorsky, J.; Armstrong, R. N.; Gilliland, G. L. Biochemistry 1995, 34, 5317.   DOI
29 Reinemer, P.; Dirr, H. W.; Ladenstein, R.; Schäffer, J.; Gallay, O.; Huber, R. EMBO J. 1991, 10, 1997.
30 W.; Huber, R.; Gilliland, G. L.; Armstrong, R. N.; Ji, X.; Board, P. G.; Olin, B.; Mannervik, B.; Jones, T. A. J. Mol. Biol. 1993, 232, 192.   DOI