• Title/Summary/Keyword: width-to-thickness ratio

Search Result 462, Processing Time 0.025 seconds

A Study on the Proper Fillet Shape in Fracture Mechanical Aspect (파괴역학적 관점에서의 적정 필렛 형상에 관한 연구)

  • Kim, Chul;Yang, Won-Ho;Cho, Myoung-Rae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.214-220
    • /
    • 1999
  • In order to use effectively a machinery part with fillet, it is necessary to determine a proper fillet shape in design step, Study of such problem by fracture mechanical criterion is rare. So, this paper focuses on the design of fillet radius in fracture mechanical aspect. Finite element method was used to obtain crack tip stress intensity factor. Stress intensity factor was calculated by COD(crack opening displacement0method proposed by Ingraffea and Manu. The parameter used in this study are thickness ration, filet radium and crack length . If fillet radius increase , crack propagation may be accelerated. Critical crack length is inversely proportional to fillet radius.

  • PDF

Variation in the Magneto-Impedance (MI) Effect According to the Shape of Patterned Co30Fe34Ni36 Alloys

  • Kim, Hyun-Kyung;Kim, Do-Hun;Son, De-Rac;Jeung, Won-Young
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.65-69
    • /
    • 2008
  • The magneto impedance (MI) behaviors of patterned $Co_{30}Fe_{34}Ni_{36}$ microwire were investigated with respect to its shape variation. After preparing $Co_{30}Fe_{34}Ni_{36}$ microwires using electrodeposition and photolithography methods, impedance measurements were conducted to compare the MI ratios of the devices with different aspect ratios. As a result, the anisotropy field and transverse permeability were found to be strongly affected by the aspect ratio of the device. The external field value at the maximum impedance and maximum sensitivity of the device was found to increase with increasing device width, which was attributed to the increased transverse anisotropy with decreasing aspect ratio. While an increase in the thickness also contributed to an increase in the MI ratio, a variation in the thickness not only increased the anisotropic field, but the variation in the MI ratio was as also affected by the skin effect. Conversely, the MI ratios of the present devices were hardly affected by variations in the length. Considering the typical aspect ratios of our devices, it was expected that the length effect would emerge when the aspect ratio was reduced to less than 10. Nevertheless, our results show that for the practical application of MI devices, the MI characteristics can be optimized by tailoring the aspect ratio of the devices.

Bond Strength of Near Surface-Mounted FRP Plate in RC Member (콘크리트 내에 표면매입 보강된 FRP 판의 부착강도)

  • Seo, Soo-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.415-422
    • /
    • 2012
  • This paper analyzed seventy eight previous test results to evaluate bond strength of Near Surface-Mounted (NSM) FRP and prediction formulas previously proposed by researchers. The results showed that the most reliable bond strength prediction was the one proposed by Seracino, who considered the shape coefficient (ratio of width-thickness) and stiffness of FRP. However, the equation tended to underestimate the bond strength, especially serious when FRP bond length was relatively short, because the equation did not consider the effect of bond length. Based on the analysis of previous test results, the relation between bond length and bond strength and the group effect due to close proximity of FRPs were determined. Based on the findings, the Seracino's formula was modified and it's applicability was evaluated. The result showed that the suggested formula can be used effectively to predict the bond strength of NSM FRP.

Strength and behaviour of bamboo reinforced concrete wall panels under two way in-plane action

  • Ganesan, N.;Indira, P.V.;Himasree, P.R.
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • An experimental investigation has been carried out on the use of an environmentally sustainable material, bamboo, in the construction of precast concrete structural wall panels. The strength and behaviour of three prototype bamboo reinforced concrete wall panel specimens under two-way in-plane action was studied. The specimens with varying aspect ratio and thinness ratio were tested to fail under a uniformly distributed in-plane load applied at an eccentricity of t/6. The aspect ratio of the specimens considered includes 1.667, 1.818 and 2 and the thinness ratio includes 12.5, 13.75 and 15. The influence of aspect ratio and thinness ratio of bamboo reinforced concrete wall panels, on its strength and behaviour was discussed. Varnished and sand blasted bamboo splints of 20 mm width and thickness varying from 8 to 15 mm were used as reinforcement in concrete. Based on the study, an empirical equation was developed considering the geometrical parameters of bamboo reinforced concrete wall panels for predicting its ultimate strength under two way in-plane action.

A Nonlinear FEM Analysis of Connections Between Concrete Filled Steel Tube Columns and H-Beams (콘크리트충전(充塡) 각형강관(角形鋼管) 기둥과 H형강 보 접합부(接合部)의 비선형 유한요소해석)

  • Yun, Hyun-Do;Kim, Ok-Ryong;Kim, Ok-Ryong;Lee, Hun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.209-218
    • /
    • 2003
  • The analytical studies included nonlinear finite element analysis of split-tee connection details subjected to axial load and lateral load. A three-dimensional model of the connections between CFT columns and H-beams has been developed. Both initial geometrical imperfections and residual stresses are taken into consideration. A geometrically nonlinear load-displacement analysis of the structure containing the imperfection is then performed, using the Riks method. Analytical results are compared with existing experimental results. Extensive parametric analyses are carried out to investigate the relation of the connections between CFT columns and H-beam to various parameters such as the axial load, column width-thickness ratio, and split-tee thickness.

A Study on the Load Carrying Capacity and Deformation Capacity of the Internal Anchors Welded Cold Formed Concrete Filled Columns (내부앵커형 콘크리트 충전 기둥의 내력 및 변형능력에 관한 연구)

  • Kim, Sun Hee;Yom, Kong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.347-357
    • /
    • 2013
  • Recently, In recognition of outstanding structural performance the use of Concrete Filled steel Tube(CFT) columns has been increased. Research is ongoing that effective use of cross-sectional because steel strength development and rising prices. In this Lab, suggests new shape by Thin steel plates bent to be L-channel welded to form square steel tube to maximize efficiency of the cross section. In addition, since the rib placed at the center of the tube width acts as an anchor; higher load capacity of buckling is acceptable. we have developed New shape welded built-up square tube for broader usability which were bent to be L-shaped and thin Plate each unit member were welded. In order to apply the new shape built-up square columns, we predicted structure behavior, stress distribution with parameter Width thickness ratio. The experimental results presented in standards and even exceed the b/t of the rib anchors installed in the role due to exert enough strength and deformation to improve performance was favorable.

Ductile crack initiation evaluation in stiffened steel bridge piers under cyclic loading

  • Fujie, Wataru;Taguchi, Miki;Kang, Lan;Ge, Hanbin;Xu, Bin
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.463-480
    • /
    • 2020
  • Although detailed shell analysis is suitable to predict the ductile crack initiation life of steel members, such detailed method adds time expense and complexity. In order to simply predict the ductile crack initiation life of stiffened steel bridge piers, a total of 33 cases are simulated to carry out the parametric analyses. In the analysis, the effects of the width-to-thickness ratio, slenderness ratio, plate thickness and so on are considered. Both shell analyses and beam analyses about these 33 cases are conducted. The plastic strain and damage index obtained from shell and beam analyses are compared. The modified factor βs is determined based on the predicted results obtained from both shell and beam analyses in order to simulate the strain concentration at the base corner of the steel bridge piers. Finally, three experimental results are employed to verify the validity of the proposed method in this study.

Effect of the Laser Beam Size on the Cure Properties of a Photopolymer in Stereolithography

  • Sim, Jae-Hyung;Lee, Eun-Dok;Kweon, Hyeog-Jun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.50-55
    • /
    • 2007
  • Stereolithography (SLA) is a technique using a laser beam to cure a photopolymer liquid resin with three-dimensional computer-aided design (CAD) data, The accuracy of the prototype, the build time, and the cured properties of the resins are controlled by the SLA process parameters such as the size of the laser beam, scan velocity, hatch spacing, and layer thickness, In particular, the size of the laser beam is the most important parameter in SLA, This study investigated the curing properties of photopolymers as a function of the laser beam size, The cure width and depth were measured either on a single cure line or at a single cure layer for various hatch spacings and laser beam sizes, The cure depth ranged from 0.23 to 0.34 mm and was directly proportional to the beam radius, whereas the cure width ranged from 0.42 to 1.07 mm and was inversely proportional to the beam radius, The resulting surface roughness ranged from 1.12 to $2.23{\mu}m$ for a ratio of hatch spacing to beam radius in the range 0.5-2.0 at a beam radius of 0.17 mm and a scan velocity of 125 mm/sec.

Comparison of dental radiography and computed tomography: measurement of dentoalveolar structures in healthy, small-sized dogs and cats

  • Lee, Seunghee;Lee, Kichang;Kim, Hyeona;An, Jeongsu;Han, Junho;Lee, Taekwon;Jeong, Hogyun;Cho, Youngkwon
    • Journal of Veterinary Science
    • /
    • v.21 no.5
    • /
    • pp.75.1-75.8
    • /
    • 2020
  • Background: Dental diseases are common in dogs and cats, and accurate measurements of dentoalveolar structure are important for planning of treatment. The information that the comparison computed tomography (CT) with dental radiography (DTR) is not yet reported in veterinary medicine. Objectives: The purpose of this study was to compare the DTR with CT of dentoalveolar structures in healthy dogs and cats, and to evaluate the CT images of 2 different slice thicknesses (0.5 and 1.0 mm). Methods: We included 6 dogs (2 Maltese and 1 Spitz, Beagle, Pomeranian, mixed, 1 to 8 years, 4 castrated males, and 2 spayed female) and 6 cats (6 domestic short hair, 8 months to 3 years, 4 castrated male, and 2 spayed female) in this study. We measured the pulp cavity to tooth width ratio (P/T ratio) and periodontal space of maxillary and mandibular canine teeth, maxillary fourth premolar, mandibular first molar, maxillary third premolar and mandibular fourth premolar. Results: P/T ratio and periodontal space in the overall dentition of both dogs and cats were smaller in DTR compared to CT. In addition, CT images at 1.0 mm slice thickness was generally measured to be greater than the images at 0.5 mm slice thickness. Conclusions: The results indicate that CT with thin slice thickness provides more accurate information on the dentoalveolar structures. Additional DTR, therefore, may not be required for evaluating dental structure in small-sized dogs and cats.

A Comparison Study on Strength of Stainless Steel Tube and Steel Tube Stub-columns (스테인리스강관과 일반구조용강관 단주내력 비교에 관한 연구)

  • Jang, Ho Ju;Yu, Jea Hee;Yang, Young Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.561-570
    • /
    • 2003
  • This study evaluate the characteristics of stainless steel for the use of stainless steel tubes as structural members. The strength of stainless steel tube was compared with that of steel tube stub-columns through tensile experiment and compressed experiment. The selected experimental parameters were diameter (width)-thickness and section shape. The results of tests showed that stainless steel tubes could be predicted as superior to steel tubes in terms of tensile strength, yield ratio, elongation percentage, and absorption ability of energy. The yield strength of stainless steel tubes were found to be higher than the Korean Standards ($Fy=2.1tf/cm^2$) and the design strength of SIJ-ASD($Fy=2.4tf/cm^2$). It was also higher then the yield strength of steel tubes. The plastic deformation of stainless steel tubes was found to beto that of steel tubes.