• Title/Summary/Keyword: width of device

Search Result 714, Processing Time 0.042 seconds

Development of Side Trimmer with Line Non-Stop (라인 무정지 사이드 트리머 개발)

  • Kim, Sun-Ho;Lee, Jeom-Pan;Cho, Hang-Deuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.146-150
    • /
    • 2015
  • Steel is produced through the steel-making process with a desired shape by a rolling press. Scrap is removed according to the sheet edge to improve the quality of the product. This machine is called a side trimmer. This study aimed to develop a side trimmer for automatically changing the width of the trimming knife without line stopping. This machine consists of a housing opening device and a turning device. The measuring technologies of sheet width, trimming knife rotation angle, and knife gap for increasing the control accuracy. This experiment was conducted to evaluate the performance of the developed technologies. It was reduced by 10% compared with the operation time of the conventional method.

GIDL current characteristic in nanowire GAA MOSFETs with different channel Width (채널 폭에 따른 나노와이어 GAA MOSFET의 GIDL 전류 특성)

  • Je, Yeong-ju;Shin, Hyuck;Ji, Jung-hoon;Choi, Jin-hyung;Park, Jong-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.889-893
    • /
    • 2015
  • In this work, the characteristics of GIDL current in nanowire GAA MOSFET with different channel width and hot carrier stress. When the gate length is fixed as a 250nm the GIDL current with different channel width of 10nm, 50nm, 80nm, and 130nm have been measured and analyzed. From the measurement, the GIDL is increased as the channel width decreaes. However, the derive current is increased as the channel width increases. From measurement results after hot carrier stress, the variation of GIDL current is increased with decreasing channel width. Finally, the reasons for the increase of GIDL current with decreasing channel width and r device. according to hot carrier stress GIDL's variation shows big change when width and the increase of GIDL current after hot carrier stress are confirmed through the device simulation.

  • PDF

The Study on the Design Factors of the Groove-Roller Seed Metering Device for Seeder of Foxtail millet & Sorghum

  • Choi, Il Su;Kang, Na Rae;Kim, Young Keun;Jun, Hyeon Jong;Choi, Yong;Kang, Tae Gyoung;Hyun, Chang Sik;Lee, Sang Hee;Kim, Jin Gu;Yu, Seoung Hwa;Chung, Sun Ok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.303-310
    • /
    • 2018
  • Purpose: This research was conducted to determine the design factors of a seed-metering device for the development of a seeder. The device allows the seeder to sow precisely one to three seeds of foxtail millet and sorghum. To obtain fundamental information regarding the design of the seed-metering device, examination of the physical properties of foxtail millet and sorghum was conducted. Methods: Based on the results of an adaptability test using an existing seeder with foxtail millet and sorghum, an experimental roller-type seed-metering device was made. The seeding factors considered during the experiment were the width, length, and depth, as well as the shape of the groove in the seed-metering roller. By adapting an analysis of variance, the experimental results of the seeding factors were analyzed. Results: The measured results of the respective lengths and widths of the seeds were 2.11 and 1.64 mm for foxtail millet, and 3.68 and 3.32 mm for sorghum, respectively. The weight of 1,000 seeds was 2.43 g for foxtail millet and 17.5 g for sorghum. The seeds were of an elliptical shape, considering the length and width. A sieve analysis showed that the size distribution of foxtail millet was quite regular whereas that of sorghum was irregular. Conclusions: The seeding results showed that the rates of incorrect planting were low when the groove of the roller-type metering device is an elliptical type. To sow one to three seeds, the groove of roller-type metering devices $2.0mm{\times}4.0mm{\times}1.5mm$ ($width{\times}length{\times}depth$) for foxtail millet, and $4.0mm{\times}8.0mm{\times}3.0mm$ and $4.5mm{\times}8.0mm{\times}3.0mm$ ($width{\times}length{\times}depth$) for Sorghum.

Analysis of Optimum Impedance for X-Band GaN HEMT using Load-Pull (로드-풀을 이용한 X-Band GaN HEMT의 최적 임피던스 분석)

  • Kim, Min-Soo;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.621-627
    • /
    • 2011
  • In this paper, we analysed performance for on-wafer GaN HEMT using load-pull in X-band, and studied optimum impedance point based on analysis result. We suggested method of optimum performance device by analysis of optimum impedance for solid state device on-wafer condition before packaging. The measured device is gate length 0.25um, and gate width is 400um, 800um. device 400um is performed $P_{sat}$=33.16dBm, PAE=67.36%, Gain=15.16dBm, and device 800um is performed $P_{sat}$=35.91dBm, PAE=69.23%, Gain=14.87dBm.

A Study of Fuzzy Control of Weld Pool Width in Gas Tungsten Arc Welding (Gas Tunsten Arc 용접에서 용융지폭의 퍼지 제어에 관한 연구)

  • Chung, Hyun-Kwon;Rhee, Se-Hun;Um, Ki-Woan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.150-157
    • /
    • 1997
  • Uniform weld pool shape is important in determining the weld quality. And weld pool width is one of the most dominant factors of the seld pool shape. In order to control the weld pool width, the fuzzy logic controller, which is well adapted to the complicated nonlinear systems such as welding, was used in this study. The weld pool image was obtained through CCD camera, and the weld pool width was calculated by processing the image. Uaing the calculated width, welding speed, as a control input, was inferred by the fuzzy logic controller. An uniform weld pool width can be successfully obtained regardless of the disturbances in the system.

  • PDF

The impact of Spacer on Short Channel Effect and device degradation in Tri-Gate MOSFET (Tri-Gate MOSFET에 SPACER가 단채널 및 열화특성에 미치는 영향)

  • Baek, Gun-Woo;Jung, Sung-In;Kim, Gi-Yeon;Lee, Jae-Hun;Park, Jong-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.749-752
    • /
    • 2014
  • The device performance of n-channel MuGFET with different fin width, existence of spacer and channel length has been characterized. Tri-Gate structure(fin number=10) has been used. There are four kinds of Tri-Gate with fin width=55nm with spacer, fin width=70nm with spacer, fin width=55nm without spacer, fin width=70nm without spacer. DIBL, subthreshold swing, Vt roll-off, (above Short Channel Effect)and hot carrier stress degradation have been measured. From the experiment results, short Channel Effect with spacer was decreased, hot carrier degradation with spacer and narrow fin width was decreased. Therefore, layout of LDD structure with spacer and narrow fin width is desirable in short channel effect and hot carrier degradation.

  • PDF

Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Kyunghoon Cho;Hakjae Lee;Yong Hyun Chung;Yeon Soo Yeom;Sei Hwan You;Hyun Joon Choi;Chul Hee Min
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.29-39
    • /
    • 2024
  • Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14 × 14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA's device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.

Effect of Intersection Angle of the Flow-focusing Type Droplet Generation Device Channel on Droplet Diameter by using Numerical Simulation Modeling (수치해석 모델링을 이용한 교차 흐름 미세유체 액적 생성 디바이스 채널 교차각이 액적 직경에 미치는 영향)

  • Kim, Shang-Jin;Kang, Hyung-Sub;Yang, Yeong-Seok;Kim, Gi-Beum
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.61-68
    • /
    • 2015
  • In this paper, we studied the effects of intersection angles of the flow-foucusing type droplet generation device inlet channel on droplet diameter using numerical simulation modeling. We modeled different intersection angles with a fixed continuous channel width, dispersed channels width, orifices width, and expansion channels width. Numerical simulations were performed using COMSOL Multiphysics$^{(R)}$ to solve the incompressible Navier-Stokes equations for a two-phase flow in various flow-focusing geometries. Modeling results showed that an increase of the intersection angle causes an increase in the modification of the dispersed flow rate ($v^{\prime}{_d}$), and the increase of the modification of the continuous flow rate ($v^{\prime}{_c}$) obstructs the dispersed phase fluid flow, thereby reducing the droplet diameter. However, the droplet diameter did not decrease, even when the intersection angle increased. The droplet diameter decreased when the intersection angle was less than $90^{\circ}$, increased at an intersection angle of $90^{\circ}$, and decreased when the intersection angle was more than $90^{\circ}$. Furthermore, when the intermediate energy deceased, there was a decrease in the droplet diameter when the intersection angle increased. Therefore, variations in the droplet diameter can be used to change the intersection angle and fluid flow rate.

A Study on Switching Characteristics of 1,200V Trench Gate Field stop IGBT Process Variables (1,200V 급 Trench Gate Field stop IGBT 공정변수에 따른 스위칭 특성 연구)

  • Jo, Chang Hyeon;Kim, Dea Hee;Ahn, Byoung Sup;Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.350-355
    • /
    • 2021
  • IGBT is a power semiconductor device that contains both MOSFET and BJT structures, and it has fast switching speed of MOSFET, high breakdown voltage and high current of BJT characteristics. IGBT is a device that targets the requirements of an ideal power semiconductor device with high breakdown voltage, low VCE-SAT, fast switching speed and high reliability. In this paper, we analyzed Gate oxide thickness, Trench Gate Width, and P+Emitter width, which are the top process parameters of 1,200V Trench Gate Field Stop IGBT, and suggested the optimized top process parameters. Using the Synopsys T-CAD Simulator, we designed IGBT devices with electrical characteristics that has breakdown voltage of 1,470 V, VCE-SAT 2.17 V, Eon 0.361 mJ and Eoff 1.152 mJ.