• Title/Summary/Keyword: wide band antenna

Search Result 309, Processing Time 0.031 seconds

The Design and Fabrication of the Triple-Band Planar Monopole Antenna for Coupled U Patch Line and Rectangular Patch (U자형 패치 라인과 사각 패치를 결합한 삼중 대역 평면형 모노폴 안테나 설계 및 제작)

  • Lee, Sung-Hun;Lee, Seung-Woo;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.745-753
    • /
    • 2011
  • In this paper, the planar monopole antenna for multi-band service is proposed. The proposed antenna, which is a rectangular patch antenna with a U-shaped slit based on a monopole antenna for wide bandwidth characteristic, is designed and analyzed. The antenna size has been miniaturized by using the U-shaped slit. The frequency characteristics are modified and optimized by varying specific parameters. To obtain desired frequency bands, the U-shaped slit and patch lines have been applied. Whole antenna dimensions including the ground plane are $35{\times}50{\times}1\;mm^3$, and the antenna part size is $35{\times}27\;mm^2$. It is fabricated on the FR-4 substrate(${\epsilon}_r=4.4$) using a microstrip line of $50{\Omega}$ for impedance matching. For the measured results, the impedance bandwidth below a VSWR of 2 is 790~916 MHz, 1.74~2.14 GHz, and 2.36~3.13 GHz. The fabricated antenna is satisfied with the aimed impedance bandwidth in GSM/DCS/US-PCS/UMTS/Bluetooth/S-DMB applications.

PD measuring on MV XLPE Calble by Using UWB Antenna (UWB 안테나를 이용한 MV급 전력케이블의 부분방전 측정 연구)

  • Yang, Sang-Hyun;Lim, Kwang-Jin;Lee, Yong-Sung;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.267-268
    • /
    • 2008
  • This paper presents compact low frequency ultra-wide band(UWB) sensor design and studying of the partial discharge diagnosis by sensing electromagnetic pulse emitted from the partial discharge source with new designed UWB sensor. In this study, we designed new type of compact low frequency UWB sensor based on microstrip antenna technology to detect both low frequency and high frequency band of partial discharge signal. And experiments of offline PD testing on in medium voltage (22.9kV) underground cable and mention the comparative results with the traditional HFCT as a reference sensor in the laboratory. In the series of comparative test, the calibration signal injection test provided with conventional IEC 60270 method and high voltage injection testing are included.

  • PDF

Development of Low-Power Electronic Scanner for 17GHz Band (17GHz 대역의 저출력 Electronic Scanner 개발)

  • Jeong, Seon-Jae;Jeon, Sung-Ho;Lee, Young-Sub;Lee, Kwang-Keun;Yim, Jae-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.445-452
    • /
    • 2019
  • Today, most detection systems used in the marine industry are the majority of devices operating in the high-power X-band bands. While most detection systems using these frequencies in the X-Band band can expect a wide range of detection performance, they are not suitable for precision detection and have the limitation that they are large and heavy. In this paper, we designed, fabricated and tested an electronic scanner capable of detecting not only the surrounding objects but also the ocean waves at a low power of less than 2W in the 17GHz frequency band of the Ku-Band. A high-performance patch array antenna and Doppler effect were utilized to obtain sufficient detection performance even at low power. As a result of the test, it was confirmed that the performance was sufficiently valuable.

Design of Circular Patch Antenna for 1.6G Hz band Satellite Navigation System (1.6 GHz대역 위성항법 시스템용 원형 패치 안테나 설계)

  • Kang, NyoungHak;Rhee, Seung-Yeop;Yeo, Junho;Lee, Jong-Ig;Kim, GunKyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.63-64
    • /
    • 2018
  • In this study, a design method for a circular polarization patch antenna operating at a frequency 1.5 GHz~1.7 GHz was studied. To obtain the wide bandwidth and high gain, air substrate between patch and ground plane was applied. The impedance bandwidth is improved by adjusting the sizes of patch, the distance between main patch and ground plate, the length of internal slots, the position of feeding point, the length of external stub, etc. The antenna is designed and simulated for an operation in the frequency range of 1.5GHz~1.7GHz band. The results show that antenna characteristics such as return loss, gain, axial ratio, radiation patterns are appropriate for the satellite navigation system.

  • PDF

Broad Band Microstrip Antenna with Saw Tooth Perturbations for Polarization Diversity (톱니 모양의 Perturbation을 갖는 편파 Diversity 용 광대역 마이크로스트립 안테나)

  • 김태홍;노근식;박천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.505-513
    • /
    • 2000
  • This study suggests new antenna design for polarization diversity. For dual polarization, two port feeding lines are printed on two separate layers and cross-shaped aperture is located on ground between the substrates. For reducing back radiation, a reflector is attached around $\lambda$/4 behind feeding substrates. For wide bandwidth we use a perturbed patch with saw tooth shaped. This perturbation effect causes reduction of antenna size and also reduction of array size. With the antenna proposed here, $1\times4$ array dual polarization antenna for polarization diversity of PCS base station is built. One single element has as large as 10.3%, 11.3% bandwidths at each port, V.S.W.R less than 1.3 and the isolation is less than -40 dB, also array antenna has 13.2% 12.7% band bandwidth, V.S.W.R less than 1.3 the isolation below -36dB and the XPD of 10 dB.

  • PDF

Directivity Gain Improvement Method for UWB Coplanar Patch Antenna (UWB 평면 패치안테나의 지향성이득의 향상 방법)

  • Joo, Chang-Bok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.63-70
    • /
    • 2012
  • This paper discussed on the directive gain improvement method of the U-type ultra wide-band(UWB) planar patch antenna model with CPW feeding. For directive gain improvement, the U-type printed patch antenna model with CPW feeding is reconstructed as a microstrip structure by adding a reflection plane with aperture slot. The reflection coefficient of the reconstructed antenna is less than -6.5 dB(VSWR < 3.3) to the characteristic impedance of $50.08{\Omega}$ and showed the directive radiation patterns with the directive gain of 7.5 dBi ~ 10.1 dBi, the front-back ratio of 17.8 dB ~ 28.7 dB and the range of -3dB radiation angle over ${\pm}30^{\circ}$ to the main beam direction of ${\theta}=0^{\circ}$.

Design for Trapezoidal Planar UWB Antenna Using Symmetry Meander Feedline (대칭 미앤더 급전 선로를 이용한 사다리꼴 평면 UWB 안테나 설계)

  • Kim, Tae-Geun;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.739-745
    • /
    • 2009
  • This paper presents a design for trapezoidal planar UWB(Ultra Wide-band) antenna using symmetry meander line to realize broad bandwidth at low frequency region. The size of proposed design antenna is $15.5{\times}21{\times}1.6mm^3$ and dielectric substrate considered in design has 4.4 of relative permittivity. The calculated bandwidth is from 1.31 GHz to 10.83 GHz and the measured return loss is 1.5 GHz to 10.6 GHz at -10 dB below, and satisfies with the UWB antenna's bandwidth. The simulated and measured radiation patterns show fine agreement with each other at each frequency.

Analysis of Impulse Dispersion for IR-UWB Antenna Using Time-Frequency Analysis (시간-주파수 분석을 이용한 IR-UWB 안테나 임펄스 분산 특성 분석)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1371-1379
    • /
    • 2010
  • This paper presents an analysis of impulse dispersion for impulse radio ultra-wide band(IR-UWB) antenna. A set of antenna structure configurations are highlighted with verification based on the STFT(Short Time Fourier Transform) in 3.1~5.1 GHz: first, a taper-slotted antenna allowing the optimal impulse transmission, and second, 4 types of the omni-directional IR-UWB antenna using different feed structures(microstrip line, and CPW(Coplanar Waveguide)). The proposed STFT allows the analysis of the IR-UWB antenna's dispersion characteristic.

Design of a Broadband Small WLAN Antenna (광대역 소형 WLAN 안테나 설계)

  • Kim, Tae Yong;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.65-67
    • /
    • 2015
  • In this paper, small WLAN antenna was designed and investigated. Proposed antenna was configured for microstrip patch antenna ($29mm{\times}29mm$) that was mounted on RF4 dielectric substrate (relative permittivity 4.4, thick 1.6mm, tangent loss 0.025) with $45mm{\times}45mm$. In order to obtain a wide band characteristic, the cutting process was 3.2mm diagonal corners of the patch antenna located on the top of the substrate. Antenna feeding position for 50 ohm impedance matching was decided to be 5.1mm at the central axis in the horizontal direction. As a result, frequency bandwidth satisfying the condition of VSWR<2dB was 2.365-2.45GHz (85MHz, 3.53%) for considering WLAN.

  • PDF

A Study on Notched Wi-Fi Bandwidth of Planar Monopole Antenna with Edge (에지를 가진 평면 모노폴 안테나의 무선랜 대역 저지에 관한 연구)

  • Lee, Yun Min;Lee, Jae Choon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.43-49
    • /
    • 2013
  • In this paper, it is designed inverted triangle structural planar monopole antenna with edge and rectangle slot for UWB(Ultra Wide Band) communication (3.1~10.6 GHz) and researched in about 5.8 GHz notch structure to prevent interference between UWB systems and existing wireless systems for using Wi-Fi service. The antenna have broadband property structurally through inverted triangle structural planar monopole which have edge. and rectangle form addition planned notch slot of 1 mm and height 0.1 mm. Monopole and ground of proposed antenna exist on coplanar plane, and excite as CPW. It used FR4 epoxy dielectric substrate of ${\varepsilon}r$=4.4, and the size is $20{\times}20{\times}1.6$ mm dimension. The measured results that are obtained return loss under -10 dB through 3.1~10.6 GHz(7.5 GHz) without Wi-Fi bandwidth and maximum gain of 8.44 dBi at E-plane. Radiation pattern is about the same that of dipole antenna at all frequency. And using notch slot and it will be able to confirm the quality which becomes notch from 5.8 GHz which are a radio LAN frequency range.