• Title/Summary/Keyword: wide band antenna

Search Result 309, Processing Time 0.022 seconds

Design of UWB Tapered Slot Antenna for the Optimum Impulse Radio Transmitting & Receiving (최적 임펄스 전송을 위한 초광대역 테이퍼 슬롯 안테나 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.553-563
    • /
    • 2010
  • This paper presents a tapered slot-antenna(TSA) for optimal impulse-signal transmission in ultra-wide band(UWB). The proposed TSA provides radiates in end-fire direction, which meets an impulse-radio UWB(IR-UWB) system demands(e.g., low loss, thus less error throughout the UWB band). In order to minimize the pulse distortion, we used an wideband impedance transformer and a microstrip slotline. The pulse fidelity characteristics was evaluated with finite-difference time-domain(FDTD) analysis technique and pulse fidelity correlation equation. Approximately 93.89 % pulse fidelity was obtained between the two antennas in 0.5 m range. Additionally, derived chirp Z-transform algorithm enables us to utilize the zoom-in option on the pulse signal in few nano-seconds below. Thus, it is possible to analyze the pulse signal distortion, delay or dispersion characteristics.

A Design and Manufacture of Modified Rhombus Slot UWB antenna with Fork-shaped-Fed (포크 모양의 급전 구조를 갖는 변형된 마름모 슬롯 UWB 안테나 설계 및 제작)

  • Kim, Jong-Hwa;Kim, Gi-Rae;Yoon, Joong-Han
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.630-632
    • /
    • 2016
  • In this paper, we propose a modified rhombus slot UWB(Ultra Wide Band) antenna with fork-shaped feeding structure. The proposed modified rhombus slot structure is eliminated upper and lower part of the basic rhombus slot shape to get ultra-wideband characteristics for UWB communication. Also, feeding structure is used to fork-shaped structure to get ultra-wideband characteristics. The antenna is designed on an FR-4 substrate of which the dielectric constant is 4.4, and its overall size is $34mm(W1){\times}34mm(L1){\times}1mm(t)$, and its slot antenna size is $30mm(W2){\times}16.75mm(L3+L4)$. After the optimized process, the proposed antenna is fabricated and measured. Measured result. fabricated antenna satisfied -10 dB impedance bandwidth in UWB frequency band (3.1 ~ 10.6 GHz ). And measured results of gain and radiation patterns characteristics displayed determined for operating bands.

  • PDF

Wideband Stacked Microstrip Antenna with Parasitic Patches for 800MHz Band (기생패치를 이용한 800MHz 대역 광대역 적층 마이크로스트립 안테나)

  • Kim, GunKyun;Lee, Jong-Ig;Ko, Jin-hyun;Rhee, Seung-Yeop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.83-84
    • /
    • 2016
  • A wideband stacked patch antenna with parasitic elements, rectangular and triangle shaped patches, is proposed. Two different shaped parasitic elements are placed in the above of main rectangular microstrip patch antenna in order to achieve wide bandwidth for 860 MHz band. Coupling between the main patch and parasitic patches is realized by thick air gap. The gap and locations of parasitic patches are found to be the main factor of the wideband impedance matching. The proposed antenna is designed on a ground plane with small size of $119mm{\times}109mm$ for application of compact transceivers. And the impedance bandwidth of the antenna should satisfied CDMA band to the 780MHz~890MHz.

  • PDF

A 94-GHz Phased Array Antenna Using a Log-Periodic Antenna on a GaAs Substrate

  • Uhm, Won-Young;Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.81-85
    • /
    • 2015
  • A 94-GHz phased array antenna using a log-periodic antenna has been developed on a GaAs substrate. The developed phased array antenna comprises four log-periodic antennas, a phase shifter, and a Wilkinson power divider. This antenna was fabricated using the standard microwave monolithic integrated circuit (MMIC) process including an air bridge for unipolar circuit implementations on the same GaAs substrate. The total chip size of the fabricated phased array antenna is 4.8 mm × 4.5 mm. Measurement results showed that the fabricated phased array antenna had a very wide band performance from 80 GHz to 110 GHz with return loss characteristics better than -10 dB. In the center frequency of 94 GHz, the fabricated phased array antenna showed a return loss of -16 dB and a gain of 4.43 dBi. The developed antenna is expected to be widely applied in many applications at W-band frequency.

Compact Antenna Design for the UWB Lower Half-Band WVAN Gbps Data-Rate Transceiver (UWB 하반 대역 WVAN Gbps 데이터 전송률 트랜시버용 소형 광대역 안테나의 설계)

  • Eom, Da-Jeong;Lim, Dong-Jin;Kahng, Sung-Tek;Lee, Seung-Sik;Choi, Sang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.283-291
    • /
    • 2012
  • In this paper, a compact antenna is designed for the UWB lower half-band WVAN Gbps data-rate transceiver. The proposed antenna broadens the bandwidth less than -10 dB by placing the ring stubs and an open stub on the rectangular monopole above the partial ground and creating multiple resonant current paths. The designed antenna goes through the electromagnetic simulation and is fabricated and the implemented antenna has the characteristics of the return loss lower than -10 dB, the antenna gain greater than 5 dBi, and the efficiency over 80 % in the UWB lower half-band ranging from 3.197 GHz to 4.732 GHz. Therefore, it is thought that the proposed antenna is suitable for the size-reduced and excellently performing wireless communication transceiver.

Design of Feedline for Broadband Microstrip Slot Antenna (광대역 마이크로스트립 슬롯 안테나의 급전선로 설계)

  • 문영길;홍성욱;김흥수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.302-305
    • /
    • 2003
  • In this paper, a feedline which is a shape of a fork is designed to improve a bandwidth of the microstrip slot antenna. To determine design parameters of the feedline, the characteristics of the microstrip slot antenna is analyzed by changing design parameters of the feedline. The microstrip slot antenna with the feedline of a shape of a fork has a wide band, from 1.7 GHz to 6.1 GHz for VSWR $\leq$2.

  • PDF

CPW Fed Ultra Wide Band Slot Antenna (초광대역 CPW 급전 슬롯안테나)

  • 김기수;박동국
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.663-668
    • /
    • 2003
  • In this paper, a CPW fed slot antenna with novel broadband feed structure is presented. To enhance the impedance bandwidth of the slot antenna we proposed the broadband feed structure of new bow-tie slot which is combined with four λ/2 rectangular radiation slot and inductively coupled. The measured 10 dB impedance bandwidth is about 60 %(5.2∼9.4 GHz) and the simulated antenna gain is about 6 dBi at 7.36 GHz.

Design of The Miniaturized Folded PIFA for The Automobile DMB Antenna (차량용 DMB 안테나를 위한 소형화 된 Folded PIFA 설계)

  • Kim, Sang-Joong;Woo, Buk-Jae;Lee, Taek-Kyung;Jang, Won-Ho
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.397-400
    • /
    • 2005
  • In this paper, folded PIFA is proposed by using folding the end point of PIFA for the automobile DMB antenna. By turning down the end point on the opposite side of shortstrip, resonance frequency is presented at not $\lambda$/4 but $\lambda$/10. So the folded PIFA has size reduction effect approximately 60 % as compared to the conventional PIFA. Also by using the parasitic patch, folded PIFA provides wide band performance. As a result, the designed antenna can be in the application of Digital Multimedia Broadcasting(180 $\sim$ 210 MHz) antenna for the automobile.

  • PDF

Internal Antenna Design for GSM900/DCS1800/PCS1900 Using an Overlap of Return Loss (반사 손실 합성법을 이용한 GSM900/DCS1800/PCS1900 내장형 안테나 설계)

  • Jang, Byung-Chan;Kim, Che-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.503-510
    • /
    • 2007
  • This paper proposes the design scheme of internal triple band antenna intended for using in GSM900, DCS1800, and PCS1900 bands. The suggested folding metal plates of the two branches are mounted on a dielectric coated ground plane for size miniaturization and durability. Return losses are overlapped when length of metal branches are controlled. This is important technique for wide band operation. For the suggested antenna geometry its return loss was calculated by HFSS 9 simulator, and was shown to be -10 [dB] less within the required band. Also, gain and radiation pattern of antenna were measured using far field measurement system in an anechoic chamber. The measured peak gain is more than 3.0 [dBi], and the average gain is over -1.0 [dBi] for the triple band, which is regarded as satisfactory for the internal antenna application. Also, the radiation pattern for two frequencies shows a similar shape each other within the required band.

Double-Layered Frequency Selective Surface Superstrate Using Ring Slot and Dipole-Shaped Unit Cell Structure

  • Lee, Hong-Min;Kim, Yong-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.86-91
    • /
    • 2010
  • In this paper, a double-layered frequency selective surface(FSS) superstrate was built and tested. The unit cell of the proposed FSS consists of a ring slot and a dipole-shaped structure and shows a complementary frequency response. Each unit cell is printed on two sides of a substrate. By using these double-layered structures, the first resonant frequency of the pass-band can be lowered. As a result, the size of the unit cell is minimized and the spacing between the other cells is reduced. The proposed FSS-dipole composite antenna is designed for the gain enhancement of wide-band code division multiple access(WCDMA) frequency bands(1.92~2.17 GHz) with a low quality factor(Q=0.17). To verify the gain enhancement performance of the FSS, an FSS-dipole composite antenna was created. Although the FSS layer enhances the gain of the primary radiation source of the dipole antenna, the FSS-dipole complex antenna cannot show a uniform gain over the entire desired frequency band. The experimental results show a gain enhancement of 3 dBi with an FSS superstrate in the WCDMA frequency band.