• 제목/요약/키워드: wicking and drying

검색결과 9건 처리시간 0.022초

고감성 의류용 직물의 수분이동특성 -섬유소재와 실 특성 및 실험방법에 따른 수분이동특성- (Moisture Transmission Characteristics of Fabric for High Emotional Garments -Moisture Transmission Characteristics according to Fiber Properties, Yarn Characteristics and Test Method-)

  • 김승진;김현아
    • 한국의류학회지
    • /
    • 제41권1호
    • /
    • pp.28-42
    • /
    • 2017
  • Moisture transfer characteristics of high emotional garments are important to evaluate wear comfort. Wicking and drying measurement methods are also critical for perspiration absorption and quick dry fabric made of high functional fibers. In this study, the wicking and drying properties of high emotional fabrics made from hybrid composite yarns using CoolMax, Tencel, Bamboo staple fibers and PP. PET CoolMax filaments were also measured and analyzed according to various measuring methods. The wicking property of hybrid composite yarn fabrics by Bireck method was mostly influenced by the structure of hybrid yarns than the absorption rate of constituent fibers; however, both the hygroscopicity of fibers and the composite yarn structure affected the wicking property of the fabrics in the drop method. Concerning drying properties, the KSK 0815B method measuring distilled moisture weight was more relevant to explain the drying characteristics of hybrid yarn fabrics than the KSK 0815A method measuring the time to drying. This study revealed that the drying properties of hybrid yarn fabrics were influenced by the hygroscopicity of constituent fibers, wicking properties of constituent yarns and structure of composite yarns.

의류소재용 직·편물의 수분이동 특성 측정 방법에 따른 흡한속건성 평가 (Assessment of Wicking and Fast Dry Properties According to Moisture Transport Measurement Method of Knit and Woven Fabrics for Garment)

  • 김현아;김승진
    • 감성과학
    • /
    • 제20권2호
    • /
    • pp.117-126
    • /
    • 2017
  • 본 연구에서는 직/편물 8종을 대상으로 이들 수직방향과 수평방향 수분이동특성 측정방법에 따른 소재들의 수분이동 특성을 분석하였다. 또한, 8종의 시편의 MMT에 의한 건조특성을 수직 건조 측정 결과와 비교하여 논의하였다. 수평수분이동 방법인 MMT 시험 결과는 수직법인 바이렉 방법의 결과와 유사한 거동을 나타내었다. 대나무, 린넨 및 면/나일론 복합 소재는 드롭법의 흡수시간은 짧았으며, 표면의 낮은 접촉각 및 직물의 높은 다공성에 기인한 것으로 판단되며, 친수성 스테이플 섬유의 구조와 상관이 있을 것으로 보인다. MMT에 의한 건조특성은 니트 및 대나무 직물의 최대 흡수반경이 가장 우수했으며, 수식 건조법에 비해 차이를 나타내었다. MMT 방법의 건조속도는 직물의 두께와 포화수분 흡수율과 높은 상관성을 가졌으며, 회귀계수는 각각 0.9와 0.88이었다. 이는 직물의 두께가 얇을수록 위킹 및 건조특성이 우수하며, 기능성 소재기획시 착용 내구성을 판단하는데 중요함을 의미한다. 또한 상이한 섬유소재, 실 및 구조의 소재에 대한 수분이동특성(위킹, 건조)는 측정 방법에 따라 다른 결과를 나타내었다.

PTT/Wool/Modal Air vortex사 편성물의 의류 착용성능과 쾌적물성 (Wearing Performance and Comfort Property of PTT/Wool/Modal Air Vortex Yarn Knitted Fabrics)

  • 김현아
    • 한국의류학회지
    • /
    • 제40권2호
    • /
    • pp.305-314
    • /
    • 2016
  • This paper investigated the applicable possibility of PTT and wool staple fibers to the air vortex system as high quality yarns for a high emotional and comfort garment. It was found that the tactile hand of vortex yarn knitted fabrics was harsher than ring and compact yarns knitted fabrics. It was observed that formability and sewability of air vortex yarn knitted fabrics seemed worse than ring and compact yarns due to low tensile and compressional resilience and high bending and shear hysteresis of air vortex yarn knitted fabrics. It revealed that wicking and drying rates of air vortex yarn knitted fabric were better than ring and compact yarns; in addition, the heat keepability of vortex yarn knitted fabric was higher than ring and compact yarns due to low thermal conductivity and max heat flow rate ($Q_{max}$). Any difference of thermal shrinkage between air vortex and ring yarn knitted fabrics was not shown, but pilling characteristic of air vortex yarn knitted fabric was superior. However, it was shown that wicking, drying, thermal property and pilling characteristics of air vortex yarn knitted fabric were superior due to air vortex yarn structure with parallel fibers in the core part and periodical and fasciated twists in the sheath part of the yarns.

고감성 의류용 축열 니트소재의 물성 (Physical Property of Heat Storage Knitted Fabrics for High Emotional Garment)

  • 김현아;허경;김승진
    • 한국의류산업학회지
    • /
    • 제17권2호
    • /
    • pp.295-304
    • /
    • 2015
  • This paper investigated wear comfort property of heat storage knitted fabrics for high emotional garment. For this purpose, ZrC imbedded PET knitted fabric was prepared and various physical properties such as thermal, wicking and drying characteristics were measured. In addition, far-infrared emission characteristics of ZrC imbedded PET was analysed and tactile hand property and dye affinity of ZrC imbedded knitted fabric were also studied in comparison with regular and other commercial heat storage PET knitted fabrics. It was observed that Zr imbedded amount in the yarn was 19.29% by ingredient analysis and far-infrared emission energy was $3.65{\times}10^2W/m^2$, emissivity was 0.906 at the range of wavelength $6{\sim}20{\mu}m$. It was found that maximum heat flow (Qmax) of ZrC imbedded PET knitted fabric was lower than that of regular PET one and warmth keepability rate was higher than that of regular PET one, which means ZrC imbedded PET have heat storage property. Drying property of ZrC imbedded knitted fabric was better than that of regular PET one due to heat by far-infrared emitted from ZrC in the core of filament. It revealed that wicking property of the ZrC imbedded fabric was not influenced by far-infrared emission, but affected by fibre physical properties. Tactile hand property of ZrC imbedded knitted fabric was not influenced by imbedding ZrC in the filament but affected preferably by structure of knitted fabric. Dye affinity of ZrC imbedded PET knitted fabric was less influenced by dyeing temperature and time than regular PET knitted one.

중공 복합사 직물의 기공도 특성이 고감성 의류용 직물의 쾌적특성에 미치는 영향 (Effect of Porosity Characteristics of Hollow Composite Yarns to the Comfort Property of the Fabrics for the High Emotional Garment)

  • 김현아;김영수;김승진
    • 한국염색가공학회지
    • /
    • 제26권3호
    • /
    • pp.218-229
    • /
    • 2014
  • The wearing comfort of garment is governed by two kinds of characteristics such as moisture and thermal transport properties and mechanical properties of fabrics. The porosity influenced by yarn and fabric structural parameters is known as main factor for wearing comfort of garment related to the moisture and thermal transport properties. This study investigated effect of porosity of composite yarns to the moisture and thermal comfort properties of composite fabrics made of hollow composite DTY and ATY yarns. The theoretical porosity and pore size were inversely proportional to cover factor of fabric, but cover factor was not correlated with experimental pore size. The wicking property of hydrophobic PET filament fabric showed inferior result irrespective of porosity, pore size and cover factor. The drying rate was superior at composite fabrics with high pore size and low cover factor, and pore size was dominant factor for drying property. On the other hand, thermal conductivity of composite fabric was mainly influenced by cover factor and not influenced by porosity. Air permeability was influenced by both porosity and cover factor and was highly increased with increasing porosity and decreasing fabric cover factor.

실 단면 형상과 니트 구조 인자가 흡한속건 소재의 수분이동 특성에 미치는 영향 (Effect of Yarns Cross-Sections and Structure Parameters of Its Knitted Fabrics to Moisture Transport of Perspiration Absorption and Fast Dry Fabrics)

  • 김현아
    • 한국의류산업학회지
    • /
    • 제20권4호
    • /
    • pp.457-463
    • /
    • 2018
  • This study examined the water absorption and drying properties of the thirteen types of the knitted fabrics for sports wear. These physical properties were analysed with relation to the constituent fiber cross-sectional shape and structure parameters of the knitted fabrics by regression analysis. Absorption and drying properties of the knitted fabric specimens were increased with increasing the porosity of the constituent yarns, which was attributed to the capillary channels in the yarns. The water absorption and drying properties were increased and decreased with increasing tightness factor and stitch density of the knitted fabric. The absorption property of the knitted fabric for perspiration absorption and fast dry sport-wear clothing was mostly influenced mostly by fiber cross-sectional shape and its characteristics, whereas, drying property was dependent on the structural parameters of the knitted fabric such as tightness factor and stitch density. Therefore, superior perspiration absorption and fast drying knitted fabric could be obtained in the fabric structure with optimum tightness factor and stitch density, and constituent yarn structure with non-circular fiber crosssection and high porosity. GATS method and MMT method are used to measure sweating fast drying properties and it is necessary to carry out studies using these measurement methods in order to compare with the results of this study.

PP/Tencel/흡한속건PET/하이브리드 복합사 구조가 고감성 의류용 직물의 물성에 미치는 영향 (Effect of Hybrid Yarn Structure Composed of PP/Tencel/Quick dry PET on the Physical Property of Fabric for High Emotional Garment)

  • 김현아;손황;김승진
    • 한국의류산업학회지
    • /
    • 제17권3호
    • /
    • pp.462-475
    • /
    • 2015
  • This paper investigated the characteristics of the physical properties of woven fabrics according to the yarn structure and fibre property. It was found that wicking property of woven fabrics made of sheath/core hybrid yarn were better than those of siro spun and siro-fil hybrid yarns, which was caused by platform for transport of moisture vapor by filaments on the core part of sheath core hybrid yarns. In drying property, the fabric specimen woven by PP/Tencel sheath core hybrid yarns as a warp and Coolmax/Tencel spun yarn as a weft showed quick drying property, which was caused by the sheath core hybrid yarn structure as drainage of water moisture and coolmax fibre characteristics as quick dry material. Concerning to breathability and thermal conductivity as heat transport phenomena, it was observed that breathability of fabrics woven with hybrid yarns such as sheath core and siro-fil in the warp and hi-multi filaments in the weft showed the lowest water vapor resistance, which was explained as due to for air gap in the fibres of the spun yarns to restrict the wet heat transport from perspiration vapor. Thermal conductivities of the fabrics woven with PET/Tencel siro-fil yarns in the weft and hybrid yarns such as sheath core and siro-fil in the warp revealed the highest values, which was observed as due to higher thermal conductivity of PET than PP and more contact point between fibres in the siro-fil and sheath core hybrid yarns.

PTT/Tencel/Cotton 친환경 MVS 혼방사 편성물의 물성에 관한 연구 (II) (Wearing Performance of Garment for Emotional Knitted Fabrics Made of PTT/Tencel/Cotton MVS Blended Yarns (II))

  • 김현아
    • 한국의류산업학회지
    • /
    • 제17권6호
    • /
    • pp.1020-1029
    • /
    • 2015
  • This paper investigated the wearing performance of knitted fabrics made of air vortex yarns using PTT/tencel/cotton fibres in comparison with ring and compact yarns for emotional garment. Wicking property of knitted fabric made of MVS yarns was worse than those by ring and compact yarns, however, drying property of knitted fabric made of MVS yarns was better than those by ring and compact yarns, which was explained as more water vapor transport due to larger openness between fibres in the MVS yarns than those in the ring and compact yarns. Thermal conductivity of knitted fabric made of MVS was lower than those of ring and compact yarns and maximum heat flow(Qmax) at the transient state of MVS knitted fabric was lower than those of ring and compact yarns, which may be attributed to MVS yarn structure that has parallel fibres in the core part of the yarn and fasciated fibre bundles on the sheath part with roughness on the yarn surface. However, pilling of MVS knitted fabric was better than those by ring and compact yarns, which was caused by less and shorter hairy fibres protruded from MVS yarn surface than those of ring and compact yarns. It was observed that tactile hand of MVS yarn knitted fabrics was stiffer than those of ring and compact yarns knitted fabrics. It was explained by low extensibility and compressibility and high bending and shear rigidities of the MVS yarn knitted fabrics, which resulted in bad wearing performance of MVS knitted fabric.

중공 복합사 특성이 고감성 의류용 직물의 쾌적성에 미치는 영향 (Effect of Hollow Composite Yarn Characteristics to the Comfort Property of Fabrics for High Emotional Garment)

  • 김현아
    • 감성과학
    • /
    • 제17권4호
    • /
    • pp.71-78
    • /
    • 2014
  • PET 중공필라멘트 복합 DTY(Draw Textured Yarns)와 ATY(Air-jet Textured Yarns)는 경량의 스포츠 의류를 포함한 고감성 의류용으로 많이 사용되고 있다. 본 연구는 중공섬유 복합 DTY와 ATY 복합사 직물의 수분 및 열이동에 관계되는 쾌적특성에 중공 복합사 및 직물의 구조 특성이 어떠한 영향을 미치는 가에 대한 분석이다. 기공의 크기가 큰 중공 복합 직물의 흡수성이 우수하였고 커버팩터는 영향을 미치지 않았다. 또한 ATY사 직물이 DTY사 직물에 비해 흡수성이 우수하였다. 반면, 건조특성은 기공 사이즈가 미세한 직물이 기공사이즈가 큰 직물보다 건조시간이 짧았으며 낮은 커버팩터와 기공 사이즈가 작은 하이멀티사 직물이 중공 복합직물에 비해 건조 특성이 우수하였다. 직물의 기공 사이즈는 공기투과도와 열전도도 특성에 가장 중요한 인자였다. 직물의 큰 기공도는 중공 복합 직물의 기공도와 열전도도에 비선형적인 반비례 상관관계를 나타냈다.