DOI QR코드

DOI QR Code

Moisture Transmission Characteristics of Fabric for High Emotional Garments -Moisture Transmission Characteristics according to Fiber Properties, Yarn Characteristics and Test Method-

고감성 의류용 직물의 수분이동특성 -섬유소재와 실 특성 및 실험방법에 따른 수분이동특성-

  • Kim, SeungJin (Dept. of Textile Engineering and Technology, Yeungnam University) ;
  • Kim, Hyunah (Korea Research Institute For Fashion Industry)
  • Received : 2016.06.14
  • Accepted : 2016.12.21
  • Published : 2017.02.28

Abstract

Moisture transfer characteristics of high emotional garments are important to evaluate wear comfort. Wicking and drying measurement methods are also critical for perspiration absorption and quick dry fabric made of high functional fibers. In this study, the wicking and drying properties of high emotional fabrics made from hybrid composite yarns using CoolMax, Tencel, Bamboo staple fibers and PP. PET CoolMax filaments were also measured and analyzed according to various measuring methods. The wicking property of hybrid composite yarn fabrics by Bireck method was mostly influenced by the structure of hybrid yarns than the absorption rate of constituent fibers; however, both the hygroscopicity of fibers and the composite yarn structure affected the wicking property of the fabrics in the drop method. Concerning drying properties, the KSK 0815B method measuring distilled moisture weight was more relevant to explain the drying characteristics of hybrid yarn fabrics than the KSK 0815A method measuring the time to drying. This study revealed that the drying properties of hybrid yarn fabrics were influenced by the hygroscopicity of constituent fibers, wicking properties of constituent yarns and structure of composite yarns.

Keywords

References

  1. Chen, Q., Fan, J. T., & Sarkar, M. K. (2012). Biomimetics of branching structure in warp knitted fabrics to improve water transport properties for comfort. Textile Research Journal, 82(11), 1131-1142. doi:10.1177/0040517512438127
  2. Das, A., & Alagirusamy, R. (2010). Science in clothing comfort. New Delhi: Woodhead Publishing India PVT LTD.
  3. Das, B., Das, A., Kothari, V. K., Fanguiero, R., & de Araujo, M. (2007). Moisture transmission through textiles. Part II: Evaluation methods and mathematical modeling. AUTEX Research Journal, 7(3), 194-216.
  4. D'Silva, A. P., Greenwood, C., Anand, S. C., Holmes, D. H., & Whatmough, N. (2000). Concurrent determination of absorption and wickability of fabrics: A new test method. Journal of the Textile Institute, 91(3), 383-396. doi:10.1080/00405000008659515
  5. Duru, S. C., & Candan, C. (2013). Effect of repeated laundering on wicking and drying properties of fabrics of seamless garments. Textile Research Journal, 83(6), 591-605. doi:10.1177/0040517512456754
  6. Fan, J., & Hunter, L. (2009). Engineering apparel fabrics and garments (1st ed.). Sawston: Woodhead Publishing Limited.
  7. Fangueiro, R., Filgueiras, A., Soutinho, F., & Meidi, X. (2010). Wicking behavior and drying capability of functional knitted fabrics. Textile Research Journal, 80(15), 1522-1530. doi:10.1177/0040517510361796
  8. Ghali, K., Jones, B., & Tracy, J. (1994). Experimental techniques for measuring parameters describing wetting and wicking in fabrics. Textile Research Journal, 64(2), 106-111. doi:10.1177/004051759406400206
  9. Grindstaff, T. H. (1969). A simple apparatus and technique for contact-angle measurements on small-denier single fibers. Textile Research Journal, 39(10), 958-962. doi:10.1177/004051756903901009
  10. Harnett, P. R., & Mehta, P. N. (1984). A survey and comparison of laboratory test methods for measuring wicking. Textile Research Journal, 54(7), 471-478. doi:10.1177/004051758405400710
  11. Hsieh, Y. L. (1995). Liquid transport in fabric structures. Textile Research Journal, 65(5), 299-307. doi:10.1177/004051759506500508
  12. Hu, J., Li, Y., Yeung, K. W., Wong, A. S. W., & Xu, W. (2005). Moisture management tester: A method to characterize fabric liquid moisture management properties. Textile Research Journal, 75(1), 57-62. doi:10.1177/004051750507500111
  13. Kim, H. A., Son, H., & Kim, S. J. (2015). Effect of hybrid yarn structure composed of PP/tencel/quick dry PET on the physical property of fabric for high emotional garment. Fashion & Textile Research Journal, 17(3), 462-475. doi:10.5805/SFTI.2015.17.3.462
  14. Kissa, E. (1996). Wetting and wicking. Textile Research Journal, 66(10), 660-668. doi:10.1177/004051759606601008
  15. McConnell, W. J. (1982). Gravimetric absorbency tester, US Patent No. 4357827 A. New Jeesey, NJ: U.S. Patent and Trademark Office.
  16. Mehta, P., Wyman, J. A., Nakhla, M. K., & Maxwell, D. P. (1994). Transmission of tomato yellow leaf curl geminivirns by bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economic Entomology, 87(5), 1291-1297. doi:10.1093/jee/87.5.1291
  17. Miller, B. (2000). Critical evaluation of upward wicking tests. International Nonwovens Journal, 9(1), 35-43.
  18. Nyoni, A. B., & Brook, D. (2006). Wicking mechanisms in yarns - the key to fabric wicking performance. The Journal of the Textile Institute, 97(2), 119-128. doi:10.1533/joti.2005.0128
  19. Patnaik, A., Rengasamy, R. S., Kothari, V. K., & Ghosh, A. (2006). Wetting and wicking in fibrous materials. Textile Progress, 38(1), 1-105. doi:10.1533/jotp.2006.38.1.1
  20. Perwuelz, A., Mondon, P., & Caze, C. (2000). Experimental study of capillary flow in yarns. Textile Research Journal, 70(4), 333-339. doi:10.1177/004051750007000409
  21. Song, G. (2011). Improving comfort in clothing (1st ed.). Sawston: Woodhead Publishing Limited.
  22. Wang, N., Zha, A., & Wang, J. (2008). Study on the wicking property of polyester filament yarns. Fibers and Polymers, 9(1), 97-100. doi:10.1007/s12221-008-0016-2
  23. Wei, Q. F., Mather, R. R., Fotheringham, A. F., & Yang, R. D. (2003). Dynamic wetting of fibers observed in an environmental scanning electron microscope. Textile Research Journal, 73(6), 557-561. doi:10.1177/004051750307300615
  24. Yanilmaz, M., & Kalaoglu, F. (2012). Investigation of wicking, wetting and drying properties of acrylic knitted fabrics. Textile Research Journal, 82(8), 820-831. doi:10.1177/0040517511435851