• Title/Summary/Keyword: whole-genome DNA

Search Result 179, Processing Time 0.027 seconds

Molecular Breeding of Genes, Pathways and Genomes by DNA Shuffing

  • Stemmer, Willem P.C.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.121-129
    • /
    • 2002
  • Existing methods for optimization of sequences by random mutagenesis generate libraries with a small number of mostly deleterious mutations, resulting in libraries containing a large fraction of non-functional clones that explore only a small part of sequence space. Large numbers of clones need to be screened to find the rare mutants with improvements. Library display formats are useful to screen very large libraries but impose screening limitations that limit the value of this approach for most commercial applications. By contrast, in both classical breeding and in DNA shuffling, natural diversity is permutated by homologous recombination, generating libraries of very high quality, from which improved clones can be identified with a small number of complex screens. Given that this small number of screens can be performed under the conditions of actual use of the product, commercially relevant improvements can be reliably obtained.

Specimen of Storage and Analysis for Genomic Epidemiology (유전체 역학 연구를 위한 시료의 보관과 분석)

  • Lee, Kwan-Hee;Hong, Yun-Chul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.36 no.3
    • /
    • pp.209-212
    • /
    • 2003
  • Because of advances of technologies in the field of genmic epidemiology in the recent years, specimen collection, storage and analysis became an essential part of research methodologies. DNA is now being used in epidemiologic studies to evaluate genetic risk factors and specimens other than the fresh whole blood can De used for PCR. Therefore, All nucleated cells, such as buccal swabs and urine specimens, are suitable for DNA analysis. For an unlimited source of genomic DNA, EBV transformation of lymphocytes can be used for immortalization. However, the type of specimen collected in genomic epidemiologic studies will depend on the study where the epidemiologist play a leading role for the design. We also briefly described various finds of analysis for SNP that is an essential part of the genomic epidemiology.

Genome-Wide Identification and Characterization of Novel Laccase Genes in the White-Rot Fungus Flammulina velutipes

  • Kim, Hong-Il;Kwon, O-Chul;Kong, Won-Sik;Lee, Chang-Soo;Park, Young-Jin
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.322-330
    • /
    • 2014
  • The aim of this study was to identify and characterize new Flammulina velutipes laccases from its whole-genome sequence. Of the 15 putative laccase genes detected in the F. velutipes genome, four new laccase genes (fvLac-1, fvLac-2, fvLac3, and fvLac-4) were found to contain four complete copper-binding regions (ten histidine residues and one cysteine residue) and four cysteine residues involved in forming disulfide bridges, fvLac-1, fvLac-2, fvLac3, and fvLac-4, encoding proteins consisting of 516, 518, 515, and 533 amino acid residues, respectively. Potential N-glycosylation sites (Asn-Xaa-Ser/Thr) were identified in the cDNA sequence of fvLac-1 (Asn-454), fvLac-2 (Asn-437 and Asn-455), fvLac-3 (Asn-111 and Asn-237), and fvLac4 (Asn-402 and Asn-457). In addition, the first 19~20 amino acid residues of these proteins were predicted to comprise signal peptides. Laccase activity assays and reverse transcription polymerase chain reaction analyses clearly reveal that $CuSO_4$ affects the induction and the transcription level of these laccase genes.

Identification of SNPs Related to 19 Phenotypic Traits Using Genome-wide Association Study (GWAS) Approach in Korean Wheat Mini-core Collection

  • Yuna Kang;Yeonjun Sung;Seonghyeon Kim;Changsoo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2020.06a
    • /
    • pp.120-120
    • /
    • 2020
  • Based on the simple sequence repeat (SSR) marker, a Korean wheat core collection were established with 616 wheat accessions. Among them, the SNP genotyping for the entire genome was performed using DNA chip array to clarify the whole genome SNP profiles. Consequently, a total of 35,143 SNPs were found and we re-established a mini-core collection with 247 accessions. Population diversity and phylogenetic analysis revealed genetic diversity and relationships from the mini core set. In addition, genome-wide association study (GWAS) was performed on 19 phenotypic traits; ear type, awn length, culm length, ear length, awn color, seed coat color, culm color, ear color, loading, leaf length, leaf width, seeding stand, cold damage, weight, auricle, plant type, heading stage, maturation period, upright habit, and degree of flag leaf. The GWAS was performed using the fixed and random model circulating probability unification (FarmCPU), which identified 14 to 258 SNP loci related to 19 phenotypic traits. Our study indicates that this Korean wheat mini-core collection is a set of germplasm useful for basic and applied research with the aim of understanding and exploiting the genetic diversity of Korean wheat varieties.

  • PDF

Proteomics and Microarrays in Cancer Research

  • Kondabagil, Kiran-Rojanna;Kwon, Byoung-Se
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.907-914
    • /
    • 2001
  • A whole genome analysis for monitoring specific changes in gene expression, using microarrays or proteome profiling of the same, are the two tools that have already revolutionized current approaches for studying disease. These methods are particularly important in cancer research as there are many overexpressed genes, and their products remain uncharacterized. This article presents a general overview of these technologies and their applications for studying cancer.

  • PDF

Chromosome numbers and polyploidy events in Korean non-commelinids monocots: A contribution to plant systematics

  • JANG, Tae-Soo;WEISS-SCHNEEWEISS, Hanna
    • Korean Journal of Plant Taxonomy
    • /
    • v.48 no.4
    • /
    • pp.260-277
    • /
    • 2018
  • The evolution of chromosome numbers and the karyotype structure is a prominent feature of plant genomes contributing to or at least accompanying plant diversification and eventually leading to speciation. Polyploidy, the multiplication of whole chromosome sets, is widespread and ploidy-level variation is frequent at all taxonomic levels, including species and populations, in angiosperms. Analyses of chromosome numbers and ploidy levels of 252 taxa of Korean non-commelinid monocots indicated that diploids (ca. 44%) and tetraploids (ca. 14%) prevail, with fewer triploids (ca. 6%), pentaploids (ca. 2%), and hexaploids (ca. 4%) being found. The range of genome sizes of the analyzed taxa (0.3-44.5 pg/1C) falls well within that reported in the Plant DNA C-values database (0.061-152.33 pg/1C). Analyses of karyotype features in angiosperm often involve, in addition to chromosome numbers and genome sizes, mapping of selected repetitive DNAs in chromosomes. All of these data when interpreted in a phylogenetic context allow for the addressing of evolutionary questions concerning the large-scale evolution of the genomes as well as the evolution of individual repeat types, especially ribosomal DNAs (5S and 35S rDNAs), and other tandem and dispersed repeats that can be identified in any plant genome at a relatively low cost using next-generation sequencing technologies. The present work investigates chromosome numbers (n or 2n), base chromosome numbers (x), ploidy levels, rDNA loci numbers, and genome size data to gain insight into the incidence, evolution and significance of polyploidy in Korean monocots.

Isolation, Characterization and Whole-Genome Analysis of Paenibacillus andongensis sp.nov. from Korean Soil

  • Yong Guan;Zhun Li;Yoon-Ho Kang;Mi-Kyung Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.753-759
    • /
    • 2023
  • The genus Paenibacillus contains a variety of biologically active compounds that have potential applications in a range of fields, including medicine, agriculture, and livestock, playing an important role in the health and economy of society. Our study focused on the bacterium SS4T (KCTC 43402T = GDMCC 1.3498T), which was characterized using a polyphasic taxonomic approach. This strain was analyzed using antiSMASH, BAGEL4, and PRISM to predict the secondary metabolites. Lassopeptide clusters were found using all three analysis methods, with the possibility of secretion. Additionally, PRISM found three biosynthetic gene clusters (BGC) and predicted the structure of the product. Genome analysis indicated that glucoamylase is present in SS4T. 16S rRNA sequence analysis showed that strain SS4T most closely resembled Paenibacillus marchantiophytorum DSM 29850T (98.22%), Paenibacillus nebraskensis JJ-59T (98.19%), and Paenibacillus aceris KCTC 13870T (98.08%). Analysis of the 16S rRNA gene sequences and Type Strain Genome Server (TYGS) analysis revealed that SS4T belongs to the genus Paenibacillus based on the results of the phylogenetic analysis. As a result of the matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) results, SS4T was determined to belong to the genus Paenibacillus. Comparing P. marchantiophytorum DSM 29850T with average nucleotide identity (ANI 78.97%) and digital DNA-DNA hybridization (dDDH 23%) revealed values that were all less than the threshold for bacterial species differentiation. The results of this study suggest that strain SS4T can be classified as a Paenibacillus andongensis species and is a novel member of the genus Paenibacillus.

Searching Method for New Small RNA in Bacillus subtilis Using Bioinformation (생물정보를 이용하여 바실러스 서브틸리스에서 새로운 Small RNA를 예측하는 방법)

  • Lee, Sang-Soo
    • The Journal of Natural Sciences
    • /
    • v.18 no.1
    • /
    • pp.47-53
    • /
    • 2007
  • In order to find novel sRNA in Bacillus subtilis which would be used to adapt to several conditions, we searched the whole genome of Bacillus subtilis using the following procedure. At first, the locations of recognition sequence of transcription factors such as PerR, OhrR, Fur and Zur were searched in the intergenic region of Bacillus subtilis genome and the locations of rho independent transcription terminator sites were also determined. Based on the information of these locations, the sRNA candidates were chosen by close locations (less than 300 bp) between the recognition site of transcription factors and rho independent transcription terminator site. Than transcription promoter sites were searched in the region of previously identified sRNA candidates and 5 PerR, 1 OhrR, 1 Fur and 1 Zur regulated good sRNA candidates were found.

  • PDF

Characterization of the Lytic Bacteriophage phiEaP-8 Effective against Both Erwinia amylovora and Erwinia pyrifoliae Causing Severe Diseases in Apple and Pear

  • Park, Jungkum;Lee, Gyu Min;Kim, Donghyuk;Park, Duck Hwan;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.445-450
    • /
    • 2018
  • Bacteriophages, bacteria-infecting viruses, have been recently reconsidered as a biological control tool for preventing bacterial pathogens. Erwinia amylovora and E. pyrifoliae cause fire blight and black shoot blight disease in apple and pear, respectively. In this study, the bacteriophage phiEaP-8 was isolated from apple orchard soil and could efficiently and specifically kill both E. amylovora and E. pyrifoliae. This bacteriophage belongs to the Podoviridae family. Whole genome analysis revealed that phiEaP-8 carries a 75,929 bp genomic DNA with 78 coding sequences and 5 tRNA genes. Genome comparison showed that phiEaP-8 has only 85% identity to known bacteriophages at the DNA level. PhiEaP-8 retained lytic activity up to $50^{\circ}C$, within a pH range from 5 to 10, and under 365 nm UV light. Based on these characteristics, the bacteriophage phiEaP-8 is novel and carries potential to control both E. amylovora and E. pyrifoliae in apple and pear.

Principles of Archaeogenetics and the Current Trends of Ancient Genome Studies (고고유전학의 분석 원리와 최근 고유전체 연구 동향)

  • Kim, Taeho;Woo, Eun Jin;Pak, Sunyoung
    • Anatomy & Biological Anthropology
    • /
    • v.31 no.4
    • /
    • pp.105-119
    • /
    • 2018
  • Archaeogenetics is an academic discipline that aims to establish scientific facts of human history by integrating ancient DNA analyses with archaeological and anthropological evidence. After ancient DNA research was initiated about 30 years ago, it has been innovated so rapidly that the range of analysis has been extended toward the whole genome sequence of ancient genomes in recent 10 years. By this development, researchers have been able to study in detail the origins and migration patterns of hominin species and ancient human populations by approaches of evolutionary genetics. This study has reviewed main principles of the archaeogenetic analysis and the current trends of ancient genome studies with recent achievements. While sampling techniques and statistical analyses have been improved, typical research methods have been established by the findings on hominins and ancient western Eurasia populations. Recently, archaeogenecists have been applying the methods to studying those in other geographical areas. Nonetheless, there is still the lack of ancient genome research about populations in Eastern Asia including the Korean peninsula. This review ultimately aims to predict possibilities and promise of future ancient genome studies of ancient Korean populations.