• Title/Summary/Keyword: white emission

Search Result 352, Processing Time 0.024 seconds

Low voltage driving white OLED with new electron transport layer (New ETL 층에 의한 저전압 구동 백색 발광 OLED)

  • Kim, Tae-Yong;Suh, Won-Kyu;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.100-101
    • /
    • 2008
  • We have developed low voltage driving white organic light emitting diode with new electron transport layer. The with light emission was realized with a yellow dopant, rubrene and blue-emitting DPVBi layer. The new electron transport layer results in very high current density at low voltage, causing a reduction of driving voltage. The device with new electron transport layer shows a brightness of 1000 cd/m2 at 4.3 V.

  • PDF

Phosphorescent Iridium Complexes for OLEDs Based on 1-Phenylpyrazole Ligands with Fluorine and Methyl Moieties

  • Yoon, Seung Soo;Song, Ji Young;Na, Eun Jae;Lee, Kum Hee;Kim, Seong Kyu;Lim, Dong Whan;Lee, Seok Jae;Kim, Young Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1366-1370
    • /
    • 2013
  • A series of phosphorescent iridium(III) complexes 1-4 based on phenylpyrazole were synthesized and their photophysical properties were investigated. To evaluate their electroluminescent properties, OLED devices with the structure of ITO/NPB/mCP: 8% Iridium complexes (1-4)/TPBi/Liq/Al were fabricated. Among those, the device with 3 showed the most efficient white emission with maximum luminance of 100.6 $cd/m^2$ at 15 V, maximum luminous efficiency of 1.52 cd/A, power efficiency of 0.71 lm/W, external quantum efficiency of 0.59%, and CIE coordinates of (0.35, 0.40) at 15.0 V, respectively.

Characteristics of LB Layer for White Light Organic Electroluminescent Device (백색 유기 EL 소자의 발광층용 LB막 특성)

  • Kim, Ju-Seung;Gu, Hal-Bon;Lee, Kyung-Sup;Song, Min-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.90-93
    • /
    • 2002
  • In the surface pressure-area isotherms of mixed monolayers, mixtures containing as much as 30 mol% of AA form stable condensed monolayer while the monolayer without AA is in the expanded state because PVK take on 3D collapsed. All of the mixed monolayers with 0, 10, 20 and 30 mol% of AA could be readily transferred onto ITO substrate at 16, 17, 24 and 26 mN/m, respectively. The monolayer containing 30 mol% of AA, however, showed a roughness value of 28A and became homogeneous decreasing with the phase separation. We fabricated organic EL device of ITO/CuPc/MEL/BBOT/iLiF/Al using mixed monolayer of 13, 19 and 25 layer deposited by LB method as a emitting layer. In the voltage-current characteristics of EL device, current density was much smaller than that of the spin-coated devices. It may due to the large contact resistance existed at the interface of LB layer/organic layer inhibit carrier injection to the emitting layer. EL spectra of device showed peaks at 450. 470, 505, 555 and 650 nm and the white light emission indicate the CIE coordinate x=0.306, y=0.353.

  • PDF

Highly Efficient Phosphorescent White Organic Light-Emitting Devices with a Poly(N-vinylcarbazole) Host Layer

  • Kang, Min-Ki;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.80-83
    • /
    • 2011
  • We have fabricated phosphorescent white organic light-emitting devices (WOLEDs) with a spin-coated poly(Nvinylcarbazole) [PVK] host layer. Iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic), tris(2-phenylpyridine)iridium(III) [$Ir(ppy)_3$], and tris(2-phenyl-1-quinoline)iridium(III) [$Ir(phq)_3$], were used as the blue, green, and red guest materials, respectively. The PVK was mixed with FIrpic, $Ir(ppy)_3$, and $Ir(phq)_3$ molecules in a chlorobenzene solution and spin-coated in order to prepare the emission layer; 3-(4-biphenylyl)-4-phenyl-5-(4-tertbutylphenyl)-1,2,4-triazole (TAZ) was used as an electron transport material. The resultant device structure was ITO/PVK:FIrpic:$Ir(ppy)_3:Ir(phq)_3$/TAZ/LiF/Al. The electroluminescence, efficiency, and electrical conduction characteristics of the WOLEDs based on the doped PVK host layer were investigated. The maximum current efficiency of the three wavelength WOLED with the doped PVK host was 19.2 cd/A.

Efficient white organic light-emitting diodes with a doped hole-blocking layer

  • Ahn, Young-Joo;Kang, Gi-Wook;Lee, Nam-Heon;Lee, Mun-Jae;Kang, Hee-Young;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.780-783
    • /
    • 2002
  • We report very efficient white OLEDs consisting of a blue-emitting 4,4'bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (${\alpha}$-NPD), a hole-blocking layer of 2,9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline (BCP) doped with red fluorescent dye of 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro- 1H, 5H-benzo[i,j]quinolizin-8-yl) vinyl]-4H-pyran) (DCM2), and green-emitting tris(8-hydroxyquinoline) aluminum ($Alq_3$). The device with the structure of ITO/${\alpha}$-NPD (50 nm)/BCP:DCM2 (0.8 %, 4 nm)/$Alq_3$ (50 nm)/LiF (0.5 nm)/Al shows a white emission with the CIE coordinates (0.329, 0.333). The maximum luminance of 20,800 cd/$m^2$ is obtained at 15.4 V. The power efficiency is 2.6lm/W and the external quantum efficiency is 2.1 % at a luminance of 100 cd/$m^2$ at the bias voltage of 6 V.

  • PDF

Material Characteristics of White Wares from Yeongdong Province, Gangwon-do: Gangneung and Donghae Kiln Sites (강원 영동지역 백자의 재료과학적 특성 연구: 강릉 남양리 백자가마터와 동해 발한동2(사문동) 가마터를 중심으로)

  • Lee, Byeong Hoon;So, Myoung-Gi
    • Journal of Conservation Science
    • /
    • v.31 no.3
    • /
    • pp.181-192
    • /
    • 2015
  • This study aims to examine production technique of twelve white wares from the Gangneung Namyang-ri and Donghae Balhan-dong2(Samun-dong) kiln sites, Kangwon Province and characteristics of the used materials, and to find a correlation among materials of the excavated white wares. X-ray fluorescence sequential spectroscopy(XRF), X-ray diffraction(XRD), Dilatometer and Inductively coupled plasma mass spectrometry(ICP-MS), Inductively coupled plasma automic emission spectrometer(ICP-AES) were applied to determine the chemical composition, crystalline phase of samples, firing temperatures, trace elements and rare earth elements. When analyzing body crystalline phases of the white wares using the XRD method, quartz and mullite were extracted from all the samples. Though firing temperature of each sample was different, they were mostly fired at a temperature below $1200^{\circ}C$. Analyzing the excavated white wares using the Seger formula, compositional properties of white wares in Gangneung Namyang-ri kiln showed diffrently from the Donghae Balhan-dong2(Samun-dong) kiln. The body of white wares from Gangneung Namyang-ri kiln have higher raito of $RO_2$ and $RO+R_2O$ than of white wares from Donghae Balhan-dong2(Samun-dong) kiln site. The white wares from Gangneung Namyang-ri kiln and Donghae Balhan-dong2(Samun-dong) kiln were made of host rocks of the different geological origin, according to the result of rare earth elements analysis.

Fabrication from the Hybrid Quantum Dots of CdTe/ZnO/G.O Quasi-core-shell-shell for the White LIght Emitting DIodes

  • Kim, Hong Hee;Lee, YeonJu;Lim, Keun yong;Park, CheolMin;Hwang, Do Kyung;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.189-189
    • /
    • 2016
  • Recently, many researchers have shown an increased interest in colloidal quantum dots (QDs) due to their unique physical and optical properties of size control for energy band gap, narrow emission with small full width at half maxima (FWHM), broad spectral photo response from ultraviolet to infrared, and flexible solution processing. QDs can be widely used in the field of optoelectronic and biological applications and, in particular, colloidal QDs based light emitting diodes (QDLEDs) have attracted considerable attention as an emerging technology for next generation displays and solid state lighting. A few methods have been proposed to fabricate white color QDLEDs. However, the fabrication of white color QDLEDs using single QD is very challenging. Recently, hybrid nanocomposites consisting of CdTe/ZnO heterostructures were reported by Zhimin Yuan et al.[1] Here, we demonstrate a novel but facile technique for the synthesis of CdTe/ZnO/G.O(graphene oxide) quasi-core-shell-shell quantum dots that are applied in the white color LED devices. Our best device achieves a maximum luminance of 484.2 cd/m2 and CIE coordinates (0.35, 0.28).

  • PDF

Bonding Properties of 14K White-Red Gold Alloy by Diffusion Bonding Process (14K 화이트-레드골드의 확산접합 공정에 따른 접합 물성 연구)

  • Song, Jeongho;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.386-391
    • /
    • 2017
  • Using a customized diffusion bonder, we executed diffusion bonding for ring shaped white gold and red gold samples (inner, outer diameter, and thickness were 15.7, 18.7, and 3.0 mm, respectively) at a temperature of $780^{\circ}C$ and applied pressure of 2300 N in a vacuum of $5{\times}10^{-2}$ torr for 180 seconds. Optical microscopy, field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to investigate the microstructure and compositional changes. The mechanical properties were confirmed by Vickers hardness and shear strength tests. Optical microscopy and FE-SEM confirmed the uniform bonding interface, which was without defects such as micro pores. EDS mapping analysis confirmed that each gold alloy was 14K with the intended composition; Ni and Cu was included as coloring metals in the white and red gold alloys, respectively. The effective diffusion coefficient was estimated based on EDS line scanning. Individual values of Ni and Cu were $5.0{\times}10^{-8}cm^2/s$ and $8.9{\times}10^{-8}cm^2/s$, respectively. These values were as large as those of the melting points due to the accelerated diffusion in this customized diffusion bonder. Vickers hardness results showed that the hardness values of white gold and red gold were 127.83 and 103.04, respectively, due to solid solution strengthening. In addition, the value at the interface indicated no formation of intermetallic compound around the bonding interface. From the shear strength test, the sample was found not to be destroyed at up to 100,000 gf due to the high bonding strength. Therefore, these results confirm the successful diffusion bonding of 14K white-red golds with a diffusion bonder at a low temperature of $780^{\circ}C$ and a short processing time of 180 seconds.

H$\gamma$LINE SPECTRUM OF INTERMEDIATE POLARS

  • Kim, Yong-Gi
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.59-64
    • /
    • 1998
  • Kim & Beuermann (1995, 1996)have developed a model for the propagation of X-rays from the accreting white dwarfthrough the infalling material and the re-emission of the energy deposited by photo-absorption in the optical (and UV) spectral range. By using this model, we calculate the profiles of the $H_{\gamma}$ emission-line spectrum of intermediate polars. Photoabsorption of X-ray by the infalling material is the dominant process in forming the observed energy-dependent rotational modulation of the X-ray flux. X-ray and optical modulations are sensitive to model parameters in different ways. In principle, these dependencies allow us to obtain improved insight into the accretion geometry of the intermediate polars. We present results of our calculations and compare them with the $H{\beta}$ line spectrum(Kim & Beuermann 1996).

  • PDF

Reduction of the Temporal Bright-Image Sticking in AC-PDP Modules Using the Vacuum Sealing Method

  • Park, Choon-Sang;Cho, Byung-Gwon;Tae, Heung-Sik
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.39-44
    • /
    • 2008
  • This paper investigates the effects of the existing sealing methods, such as the conventional atmospheric-pressure sealing method and vacuum sealing, on temporal bright-image sticking. To produce a residual image caused by temporal brightimage sticking, the entire region of a 42-in panel with an Xe-(11%)-He(35%) gas mixture was abruptly changed to a full-white background image after displaying a square-type image at peak luminance for about 60s. From the monitoring of the difference in the display luminance, infrared emission, color temperature, and disappearing time between the cells with and without temporal bright-image sticking, it was observed that the vacuum sealing method contributes to the reduction of temporal bright-image sticking.