• Title/Summary/Keyword: whey protein hydrolysis

Search Result 29, Processing Time 0.021 seconds

Properties of Transglutaminase Treated Milk Product Powders (Transglutaminase를 처리한 분말 유제품의 특성)

  • Jeong, Ji-Eun;Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.345-351
    • /
    • 2005
  • Physicochemical properties and functionalities of sodium caseinate, whey protein, skim milk, and whole milk with or without transglutaminase (TGase, 200 : 1) at $38^{\circ}C$ were determined. After crosslinking by TGase, whey protein was effective in improving heat stability compared to native protein at over $70^{\circ}C$. Whole milk was stable with lower turbidity compared to native solution. Whey protein showed low hydrolysis degree, fewer than sodium caseinate, during early activation time and increased slightly thereafter Emulsifying activities of sodium caseinate at pH 2 and 8, and whey protein at pH 7 and 8 improved. Emulsion stability of sodium caseinate improved at entire pH range studied. Foam expansion and foam stability of samples improved with TGase-treatment. Viscosities of TGase-treated samples were higher than those of untreated ones.

Whey protein hydrolytic properties and its immunomodulation activity by produced enzyme from Serratia marcescens S3-R1 (Serratia marcescens S3-R1이 생산한 효소에 의한 유청단백질 가수분해물의 특성과 면역조절 활성)

  • Yu, Jae Min;Renchinkhand, G.;Jeong, Seok Geun;Bae, Hyoung Churl;Nam, Myoung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.221-226
    • /
    • 2013
  • Degrees of hydrolysis by alkaline protease produced from Serratia marcescens S3-R1 is 3.95-6.30% of whey proteins during 5, 15, 30, 60, 90, 120,180, 240 min incubation at $40^{\circ}C$. Proteolytic pattern of the whey proteins showed that various low molecular weight peptides were generated during the incubation periods. The biological function of in Raw 264.7 cells treated with whey protein hydrolytic peptides, anti-inflammatory effect showed exhibit in the expression of pro-inflammatory cytokines such as TNF-${\alpha}$, IL-6, COX-2 and iNOS by PCR analysis. COX-2 and iNOS gene expression inhibited in Raw 264.7 cells on whey protein hydrolysates below 3,000 dalton. The protease from Serratia marcescens S3-R1 showed a potential in production of low molecular weight whey protein hydrolysates which could be used for industrial application.

Characteristics of Whey Protein (WPC-30) Hydrolysate from Cheese Whey (치즈유청으로부터 제조한 유청단백질 가수분해물의 특성에 관한 연구)

  • Yoon, Yoh-Chang;An, Sung-Il;Jeong, A-Ram;Han, Song-Ee;Kim, Myeong-Hee;Lee, Chang-Kwon
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.435-440
    • /
    • 2010
  • Whey protein concentrate (WPC) is widely used to increase the nutritional and functional properties of food. In this study, the physiochemical and functionality of WPC-30 hydrolysates were examined to evaluate the possibility of application in the food industry. The WPC-30 was manufactured using ultrafiltration and spray-drying, and then hydrolyzed with proteolytic enzyme including alcalase, flavourzyme, nuetrase and protamex. Enzymatic hydrolysis had a significant influence on the physicochemical properties as evident from the increased foaming capacity, solubility. Alcalase caused highest protein hydrolysis (3.26%) and the bitterness. Foaming capacity was largest in WPC-30 hydrolysate treated with flavourzyme. Protein solubility at various levels of pH was highest in protamex-treated WPC-30 hydrolysate. However, the solubility of WPC-30 hydrolysates was significantly improved in alkaline condition than in acidic and neutral conditions. The study revealed that spray dried enzyme modified WPC can be used in various functional food.

Separation of Calcium-binding Protein Derived from Enzymatic Hydrolysates of Cheese Whey Protein

  • Kim, S.B.;Shin, H.S.;Lim, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.712-718
    • /
    • 2004
  • This study was carried out to separate the calcium-binding protein derived from enzymatic hydrolysates of cheese whey protein. CWPs (cheese whey protein) heated for 10 min at $100^{\circ}C$ were hydrolyzed by trypsin, papain W-40, protease S, neutrase 1.5 and pepsin, and then properties of hydrolysates, separation of calcium-binding protein and analysis of calcium-binding ability were investigated. The DH (degree of hydrolysis) and NPN (non protein nitrogen) of heated-CWP hydrolysates by commercial enzymes were higher in trypsin than those of other commercial enzymes. In the result of SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis), $\beta$-LG and $\alpha$-LA in trypsin hydrolysates were almost eliminated and the molecular weight of peptides derived from trypsin hydrolysates were smaller than 7 kDa. In the RP-HPLC (reverse phase HPLC) analysis, $\alpha$-LA was mostly eliminated, but $\beta$-LG was not affected by heat treatment and the RP-HPLC patterns of trypsin hydrolysates were similar to those of SDS-PAGE. In ion exchange chromatography, trypsin hydrolysates were shown to peak from 0.25 M NaCl and 0.5 M NaCl, and calcium-binding ability is associated with the large peak, which was eluted at a 0.25 M NaCl gradient concentration. Based on the results of this experiment, heated-CWP hydrolysates by trypsin were shown to have calcium-binding ability.

Peptide Analysis and the Bioactivity of Whey Protein Hydrolysates from Cheese Whey with Several Enzymes

  • Jeewanthi, Renda Kankanamge Chaturika;Kim, Myeong Hee;Lee, Na-Kyoung;Yoon, Yoh Chang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.62-70
    • /
    • 2017
  • The aim of this study was identifying a suitable food grade enzymes to hydrolyze whey protein concentrates (WPCs), to give the highest bioactivity. WPCs from ultrafiltration retentate were adjusted to 35% protein (WPC-35) and hydrolyzed by enzymes, alcalase, ${\alpha}-chymotrypsin$, pepsin, protease M, protease S, and trypsin at different hydrolysis times (0, 0.5, 1, 2, 3, 4, and 5 h). These 36 types of hydrolysates were analyzed for their prominent peptides ${\beta}-lactoglobulin$ (${\beta}-Lg$) and ${\alpha}-lactalbumin$ (${\alpha}-La$), to identify the proteolytic activity of each enzyme. Protease S showed the highest proteolytic activity and angiotensin converting enzyme inhibitory activity of IC50, 0.099 mg/mL (91.55%) while trypsin showed the weakest effect. Antihypertensive and antioxidative peptides associated with ${\beta}-Lg$ hydrolysates were identified in WPC-35 hydrolysates (WPH-35) that hydrolyzed by the enzymes, trypsin and protease S. WPH-35 treated with protease S in 0.5 h, responded positively to usage as a bioactive component in different applications of pharmaceutical or related industries.

Preparation of Hypoallergenic Whey Protein Hydrolysate by a Mixture of Alcalase and Prozyme and Evaluation of Its Digestibility and Immunoregulatory Properties

  • Jiyeon Yang;Se Kyung Lee;Young Suk Kim;Hyung Joo Suh;Yejin Ahn
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.594-611
    • /
    • 2023
  • Whey protein (WP) has nutritional value, but the presence of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA) cause allergic reactions. In this study, hypoallergenic whey protein hydrolyate (HWPH) was prepared by decomposing β-LG and α-LA of WP using exo- and endo-type proteases. The enzyme mixing ratio and reaction conditions were optimized using response surface methodology (RSM). Degradation of α-LA and β-LG was confirmed through gel electrophoresis, and digestion, and absorption rate, and immunostimulatory response were measured using in vitro and in vivo systems. Through RSM analysis, the optimal hydrolysis conditions for degradation of α-LA and β-LG included a 1:1 mixture of Alcalase and Prozyme reacted for 10 h at a 1.0% enzyme concentration relative to substrate. The molecular weight of HWPH was <5 kDa, and leucine was the prominent free amino acid. Both in vitro and in vivo tests showed that digestibility and intestinal permeability were higher in HWPH than in WP. In BALB/c mice, as compared to WP, HWPH reduced allergic reactions by inducing elevated Type 1/Type 2 helper T cell ratio in the blood, splenocytes, and small intestine. Thus, HWPH may be utilized in a variety of low allergenicity products intended for infants, adults, and the elderly.

Comparison of Allergic Parameters between Whey Protein Concentrate and Its Hydrolysate in Rat Basophilic Leukemia (RBL)-2H3 Cells

  • Kim, Hana;Ahn, Sung-Il;Jhoo, Jin-Woo;Kim, Gur-Yoo
    • Food Science of Animal Resources
    • /
    • v.38 no.4
    • /
    • pp.780-793
    • /
    • 2018
  • This study was conducted to compare the anti-allergic effects of a whey protein concentrate (WPC) and WPC hydrolysate. WPC hydrolysate was prepared using enzymatic digestion for 8 h with trypsin and ${\alpha}$-chymotrypsin, after which it was freeze-dried. The allergic parameters assessed in rat basophilic leukemia (RBL)-2H3 cells were degranulation and release of ${\beta}$-hexosaminidase, release of tumor necrosis factor $(TNF)-{\alpha}$, and changes in the expression of $IL-1{\beta}$, IL-4, and IL-10 by real time polymerase chain reaction (PCR). During preparation of the WPC hydrolysate, hydrolysis increased rapidly from 0 to 10 min and then gradually increased slowly from 1 h onwards, achieving a final degree of hydrolysis of 78.50%. The SDS-PAGE analysis revealed a reduction in the intensity of several protein bands in the WPC hydrolysate compared to the WPC. IgE-induced ${\beta}$-hexosaminidase release from RBL-2H3 cells was decreased to a higher degree following treatment with the hydrolysate compared to WPC treatment. W500 ($500{\mu}g/mL$ WPC) showed the least inhibition of ${\beta}$-hexosaminidase release, but there was no significant difference between W500 and W1000 ($1,000{\mu}g/mL$) (p<0.05). H1000 ($1,000{\mu}g/mL$ WPC hydrolysate) inhibited ${\beta}$-hexosaminidase release by 39%. Compared to the control, treatment with H1000 decreased $TNF-{\alpha}$ secretion to 11.87 pg/mL. The gene expression levels of IL-1${\beta}$, IL-4, and IL-13 were all significantly decreased in hydrolysate (p<0.05). In the case of $IL-1{\beta}$ and IL-4, the expression levels in W1000 treated cells were decreased by 73.67% and 65%, respectively, and that of IL-13 was decreased by 66.43% compared to the control.

Antioxidant Activity of Low Molecular Peptides Derived from Milk Protein (유단백질 가수분해에 의해 생성된 저분자 Peptides의 항산화 활성)

  • Woo, Sung-Ho;Jhoo, Jin-Woo;Kim, Gur-Yoo
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.633-639
    • /
    • 2009
  • The principal objective of the current study was to prepare low molecular weight peptides from milk proteins using enzymatic hydrolysis techniques, in an effort to assess the antioxidant activity of these peptides. The casein and whey proteins isolated from fresh milk were treated with several proteolytic enzymes, such as chymotrypsin, pepsin, and trypsin and the resulting low molecular weight peptides were collected by TCA precipitation. Their identity was confirmed by SDS-PAGE analysis. The hydrolysis experiments indicated that whey protein treated with chymotrypsin displayed the highest degree of protein hydrolysis. The antioxidant activity of milk protein hydrolysates was determined by measuring the ABTS-radical scavenging activity. The results of these experiments showed that hydrolysis of the milk protein was effective in increasing their antioxidant activities. Especially, the tryptic digested casein displayed the highest radical scavenging activity (80.7%). The hydrolyzed low molecular weight milk protein was isolated using an ultrafiltration membrane. The casein hydrolysate passed through a membrane with molecular weight cut-off (MWCO) of 3 kDa displayed the strongest antioxidant activity.

Antigenicity of Whey Protein Hydrolysates Against Rabbit Anti ${\alpha}-Lactalbumin$ Antiserum (토끼 항 ${\alpha}-Lactalbumin$ 항혈청에 대한 유청단백질 가수분해물의 항원성)

  • Ha, Woel-Kyu;Juhn, Suk-Lak;Kim, Jung-Wan;Lee, Soo-Won;Lee, Jae-Young;Shon, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.436-441
    • /
    • 1994
  • To investigate the lowering effects of in vitro enzymatic hydrolysis by the treatment of chymotrypsin, trypsin, pancreatin, or protease from Aspergillus oryzae on the antigenicity of whey protein isolate (WPI) against rabbit anti ${\alpha}-LA$ antiserum, competitive inhibition ELISA (cELISA) and passive cutaneous anaphylaxis (PCA) test using guinea pig were performed. The results of cELISA showed that the monovalent antigenicity of the whey protein hydrolysates (WPH) to the antiserum was decreased to $10^{-2.5}-10^{-5.5}$ and less by the hydrolysis. The monovalent antigenicity of the WPH hydrolyzed by trypsin, or protease from Asp. nryzae was much lowered by the pretreatment of heat denaturation. The antigenicity of the WPH hydrolyzed by chymotrypsin, trypsin, or pancreatin was much lowered by the pretreatment of pepsin. Especially, the antigenicity of TDP (trypic hydrolysate with pretreatment of heat and pepsin) was found almost to be removed. However, there was not consistency between degree of hydrolysis(DH) and the monovalent antigenicity of the WPH. By the heterologous PCA it was found that all of the PGPH lost the polyvalent antigenicity regardless of the pretreatments although WPI and ${\alpha}-LA$ had the positive high antigenicity. The results suggested that the peptides derived from ${\alpha}-LA$ in WPH could bind specific antibodies but they could not induce allergy. Therefore, it was elucidated that the allergenicity of ${\alpha}-LA$ in whey protein could be destroyed easily by the enzymatic hydrolysis.

  • PDF

Reduction of the Antigenicity of Whey Protein by Enzymatic Hydrolysis (효소가수분해에 의한 유청단백질의 항원성 저하)

  • Ha, Woel-Kyu;Juhn, Suk-Lak;Kim, Jung-Wan;Lee, Soo-Won;Lee, Jae-Young;Shon, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.74-80
    • /
    • 1994
  • As a preliminary study about the reduction of the antigenicity of whey protein isolate(WPI) by treatment of chymotrypsin, trypsin, pancreatin, and protease from Aspergillus oryzae, the properties and antigenicities of whey protein hydrolysates(WPH) were investigated. When degrees of hydrolysis (DH) were measured by use of trinitrobenzensulfonic acid(TNBS), the DH of the WPH treated by pancreatin or protease from Aspergillus oryzae$(5.05{\sim}11.47)$ were much higher than those of the tryptic or chymotryptic WPH$(15.67{\sim}20.20)$. And the pretreatments of heat$(75^{\circ}C)$, 20 min and/or pepsin resulted in higher DH of WPH, generally. When the molecular distributions of the WPH were determined by high performance size exclusion chromatography(HPSEC), the ratios of polypeptides with molecular weight more than 10kDa ranged from 12% to 36%, and the average molecular weights and the average peptide lengths of the WPH were $4,252{\sim}9,132$ dalton and $38{\sim}83$ amino acids, respectively. And there was no bitter taste in all of the WPH. Results of SDS-PAGE showed that most of intact native proteins were eliminated by the enzymatic hydrolysis but there were a few bands of peptides larger than 14.2 kDa in some WPH. When antigenicity was assayed by competitive inhibition enzyme-linked immunosorbent assay(cELISA), monovalent antigenicity of WPH to rabbit anti-WPI antiserum were lowered to $10^{-1.7}-10^{-4.9}$ times and less by the enzymatic hydrolysis. And the pretreatments of heat and pepsin resulted in the lowest antigenicicy within a group of enzymatic hydrolysis, especially in case of the pancreatic hydrolysate(PDP) whose antigenicity was found almost to be removed.

  • PDF