DOI QR코드

DOI QR Code

Characteristics of Whey Protein (WPC-30) Hydrolysate from Cheese Whey

치즈유청으로부터 제조한 유청단백질 가수분해물의 특성에 관한 연구

  • Yoon, Yoh-Chang (Department of Food Science and Biotechnology, Konkuk University) ;
  • An, Sung-Il (Department of Food Science and Biotechnology, Konkuk University) ;
  • Jeong, A-Ram (Department of Food Science and Biotechnology, Konkuk University) ;
  • Han, Song-Ee (Department of Food Science and Biotechnology, Konkuk University) ;
  • Kim, Myeong-Hee (Department of Food Science and Biotechnology, Konkuk University) ;
  • Lee, Chang-Kwon (Bio-Food and Drug Research Center, Konkuk University)
  • 윤여창 (건국대학교 동물생명과학대학 축산식품생물공학) ;
  • 안성일 (건국대학교 동물생명과학대학 축산식품생물공학) ;
  • 정아람 (건국대학교 동물생명과학대학 축산식품생물공학) ;
  • 한송이 (건국대학교 동물생명과학대학 축산식품생물공학) ;
  • 김명희 (건국대학교 동물생명과학대학 축산식품생물공학) ;
  • 이창권 (건국대학교 바이오식.의약연구센터)
  • Received : 2010.03.03
  • Accepted : 2010.10.15
  • Published : 2010.10.31

Abstract

Whey protein concentrate (WPC) is widely used to increase the nutritional and functional properties of food. In this study, the physiochemical and functionality of WPC-30 hydrolysates were examined to evaluate the possibility of application in the food industry. The WPC-30 was manufactured using ultrafiltration and spray-drying, and then hydrolyzed with proteolytic enzyme including alcalase, flavourzyme, nuetrase and protamex. Enzymatic hydrolysis had a significant influence on the physicochemical properties as evident from the increased foaming capacity, solubility. Alcalase caused highest protein hydrolysis (3.26%) and the bitterness. Foaming capacity was largest in WPC-30 hydrolysate treated with flavourzyme. Protein solubility at various levels of pH was highest in protamex-treated WPC-30 hydrolysate. However, the solubility of WPC-30 hydrolysates was significantly improved in alkaline condition than in acidic and neutral conditions. The study revealed that spray dried enzyme modified WPC can be used in various functional food.

유청단백질농축물(WPC)은 풍부한 단백질 및 다양한 생리활성 물질들을 함유하고 있음으로 식품의 단백질 보충 및 건강 기능성 향상을 위해 식품산업에서 널리 사용되고 있는 유용한 식품소재 중에 하나이다. 본 연구는 유용 기능성 식품소재로 활용이 가능한 유청단백질의 산업화와 관련된 사항들을 조사하고자 수행하였다. 한외여과를 이용한 WPC 제조과정에서 WPC-30을 포함한 한외여과 기의 국산화 가능성을 확인했다. 한외여과, 분무건조 및 단백질분해 효소를 이용하여 제조한 WPC-30 가수분해물의 이화학적 기능성을 검토한 결과 단백질 가수분해능 및 관능성에 대한 평가는 alcalase 처리했을 때 가장 높은 것으로 나타났으며 거품 형성능은 flavourzyme 처리한 WPC-30 가수분해물에서 가장 높은 결과를 보였다. 또한 다양한 pH조건에서의 단백질의 용해도를 측정한 결과, protamex 처리한 WPC-30 가수분해물에서 가장 높은 용해도를 나타내었다. 그러나 모든 WPC-30 가수분해물의 용해도는 알차리 조건에서는 유의적으로 개선되는 효과를 보였다. 이들 결과들을 총체적으로 검토한 결과, 효소를 이용한 유청단백질의 가수분해는 알카리조건에서 alcalase를 사용하는 것이 가장 효과적인 것으로 나타났다.

Keywords

References

  1. Abubakar, A., Saito, T., Kitazawa, H., Kawai Y. and Itoh, T. 1998. Structure analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. J. Dairy Sci. 81: 3131-3138. https://doi.org/10.3168/jds.S0022-0302(98)75878-3
  2. ADLER-NISSEN, J. 1986. Enzymatic hydrolysis of food proteins. Elsevier Applied Sci. pub. New York.
  3. Aldler-Nissen, J. 1979. Determination of the degree of hydrolysis of food protein hydrolates by trinitrobenzene-sulfulfonic acid. J. Agr. Food Chem. 27:1256-1262. https://doi.org/10.1021/jf60226a042
  4. Bayram, T., Pekmez, M., Arda, N. and Yalcin A. S. 2008. Antioxidant activity of whey protein fractions isolated by gel exclusion chromatography and protease treatment. Talanta. 75(3): 705-709. https://doi.org/10.1016/j.talanta.2007.12.007
  5. Beaulieu, J., Dubuc, R., Beaudet, N., Dupont, C. and Lemieux P. 2007. Immunomodulation by a malleable matrix composed of fermented whey proteins and lactic acid bacteria. J. Med. Food. 10(1):67-72. https://doi.org/10.1089/jmf.2006.231
  6. Beuchart, L. R. 1977. Functional and electrophoretic charac-teristics of succinylated peanut flour proteins. J. Agri. Food Chem. 25: 258. https://doi.org/10.1021/jf60210a044
  7. Bucci, L. R. and Unlu, L. 2000. Proteins and amino acids in exercise and sport. In: Energy-yielding macronutrients and energy metabolism in sports nutrition. Driskell, J. and Wolinsky, I. Eds. CRC Press. Boca Raton FL, 197-200.
  8. Gauthier, S. F., Paquin, P., Pouliot. Y. and Turgeon, S. 1993. Surface Activity and Related Functional Properties of Peptides Obtained from Whey Proteins. J. Dairy Sci.76:321-328. https://doi.org/10.3168/jds.S0022-0302(93)77353-1
  9. Jayaprakasha, H. M. and Yoon, Y. C. 2005. Characterization of physicochemical and functional behavior of enzymatically modified spray dried whey protein concentrate. Milchwissenschaft 60(3): 305-309.
  10. Kester, J. J. and Richardson, T. 1984. Modification of Whey Proteins to Improve Functionality. J. Dairy Sci 67:1387-1393.
  11. Lands, L. C., Grey, V. L. and Smountas, A. A. 1999. Effect of supplementation with a cysteine donor on muscular performance. J. Appl, Physiol. 87:1381-1385.
  12. Matoba, T. and Hata, T. 1972. Relationship between bitterness of peptides and their chemical structure. Agri. Bio. Chem. 36:1423. https://doi.org/10.1271/bbb1961.36.1423
  13. McSweeney, P. L. H., Olson, N. F., Fox, P. F., Healy, A. and Hojrup, P. 1993. Proteolytic specficity of bovine $\alpha\;_{S1}$-casein. Food Biotechnol. 7(2):143-158. https://doi.org/10.1080/08905439309549853
  14. Meilgaard, M., Civille, G. V. and Carr, B. T. 1987. Sensory Evaluation Techniques. CRC Press, Inc. Florida.
  15. Morr, C. V., German, B., Kinsella, J. E., Regenstein, J. M., van Buren, J. P., Kilara, A., Lewis, B. A. and Mangino, M. E. 1985. A collaborative study to develop a standardized food protein solubility procedure. J. Food Sci. 50:17151718. https://doi.org/10.1111/j.1365-2621.1985.tb10572.x
  16. Murakami, M., Tonouchi, H., Takahashi, R., Kitazawa, H., Kawai, Y., Negishi, H. and Saito, T. 2004. Structural analysis of a new anti-hypertensive peptide (beta-lactosin B) isolated from a commercial whey product. J Dairy Sci. 87(7):1967-1974. https://doi.org/10.3168/jds.S0022-0302(04)70013-2
  17. Phillips, R. D. and Beuchat, L. R. 1981. Protein functionality in food systems (Ed. J. P. Cherry) American Chemical Society, Symposium Series 147, Washington, DC.
  18. Pihlanto-Leppala. A., Rokka, T. and Korhonen, H. 1990. Angiotensin-I converting enzyme inhibitory peptides derived from bovine milk proteins. Int. Dairy J. 8:325. https://doi.org/10.1016/S0958-6946(98)00048-X
  19. Renner, E. and Abd-EL-Salam. 1991. Application of Ultrafiltration in the Dairy Industry. Elsevier Applied Science, London.
  20. Saito, T. 2008. Antihypertensive peptides derived from bovine casein and whey proteins. Adv. Exp. Med. Biol. 606:295-317. https://doi.org/10.1007/978-0-387-74087-4_12
  21. Tseng, Y. M., Chen, S. Y., Chen, C. H., Jin, Y. R., Tsai, S. M., Chen, I. J., Lee, J. H., Chiu, C. C. and Tsai, L. Y. 2008. Effects of alcohol-induced human peripheral blood mononuclear cell (PBMC) pretreated whey protein concentrate (WPC) on oxidative damage. J Agric Food Chem. 56(17):8141-8147. https://doi.org/10.1021/jf801034k
  22. Turgeon, S. F, Gauthier, P. and Paquin, P. 1992. Emulsifying property of whey peptide fractions as a function of pH and ionic strength. J. Food Sci. 57(3):601-604. https://doi.org/10.1111/j.1365-2621.1992.tb08052.x
  23. Wu, G., Fang, Y., Yang, S., Lupton, J. R. and Turner N. D. 2004. Glutathione metabolism and its implications for health. J. Nutr. 134:489-492.
  24. 김상범. 2003. Cheese whey orotein의 효소적 가수분해물에서 유래된 calcium binding peptides 분리 및 특성에 관한 연구. 경상대학교 박사학위 논문.
  25. 유성호. 2009. 치즈유청단백질 가수분해물의 생산 및 생리활성 펩타이드를 함유하는 건강음료 개발에 관한 연구. 건국대학교 박사학위 논문.
  26. 이건봉. 2005. Sodium caseinate 가수분해물의 특성과 anogiotensin-I converting enzyme 저해효과에 관한 연구. 건국대학교 박사학위 논문.
  27. 井澤登. 1999. 단백질가수분해물의 고미의 제거법. 일본식품과학회지. 46(8):501-507.

Cited by

  1. ) shell by commercial proteases vol.45, pp.5, 2012, https://doi.org/10.4163/kjn.2012.45.5.429
  2. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry vol.35, pp.3, 2015, https://doi.org/10.5851/kosfa.2015.35.3.350