• Title/Summary/Keyword: whey lactose

Search Result 76, Processing Time 0.033 seconds

Preparation and Characterization of a Polar Milk Lipid-enriched Component from Whey Powder

  • Lee, Kwanhyoung;Kim, Ara;Hong, Ki-Bae;Suh, Hyung Joo;Jo, Kyungae
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.209-220
    • /
    • 2020
  • Milk fat globule membrane (MFGM) is a lipid carrier in mammals including humans that consists mainly of polar lipids, like phospholipids and glycolipids. In this study, a process to enrich polar lipids in commercial butter and whey powder, including polar lipids of MFGM, was developed. WPC (whey protein concentrate) 60 was selected as the most suitable raw material based on the yield, phospholipid, protein, and lactose content of the polar lipid fraction obtained by ethanol extraction of two WPC (WPC60 and WPC70) and two buttermilk (A and B). After fractionation under optimum conditions, the polar-lipid enriched fraction from WPC60 contained 38.56% phospholipids. The content of glycolipids, cerebroside, lactosylceramide, ganglioside GM3, ganglioside GD3, was 0.97%, 0.55%, 0.09%, and 0.14%, respectively. Rancimat results showed that the oxidation stability of fish oil increased with an increase in the polar-lipid fraction by more than 30 times. In addition, the secretion of IL-6 and TNF-α decreased in a concentration-dependent manner after treatment of RAW 264.7 cells with 0.1 to 100 ppm of the polar lipid fraction. In this study, polar lipid concentrates with antioxidant and anti-inflammatory activity, were prepared from milk processing by-products. The MFGM polar lipid concentrates made from by-products are not only additives for infants, but are also likely to be used as antioxidants in cooking oils and as active ingredients for functional foods.

Fortification of γ-aminobutyric acid and bioactive compounds in whey by co-fermentation using Bacillus subtilis and Lactobacillus plantarum (유청을 이용한 Bacillus subtilis와 Lactobacillus plantarum의 혼합발효를 통한 γ-aminobutyric acid와 생리활성물질 강화)

  • Kim, Geun-young;Lim, Jong-soon;Lee, Sam-pin
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.572-580
    • /
    • 2018
  • Biologically active substances including gamma-aminobutryric acid (GABA) were added into whey by co fermentation using Bacillus subtilis HA and Lactobacillus plantarum EJ2014. The first fermentation using B. subtilis HA with 5% monosodium glutamate (MSG) and 2% glucose enhanced the production of poly-${\gamma}$-glutamic acid (PGA), resulting in higher consistency of $4.09Pas^n$ as well as whey protein peptides. After the second fermentation using L. plantarum EJ2014, the remaining MSG (3.40%) as a precursor was completely converted to 2.21% GABA. Furthermore, the lactose content in whey decreased from 6.73 to 3.68% after co-fermentation, and the tyrosine content increased from 20.47 to 38.24%. Peptides derived of whey proteins were confirmed by SDS-PAGE. Viable cell counts of B. subtilis and L. plantarum were 5.83 log CFU/mL and 9.20 log CFU/mL, respectively. Thus, co-fermentation of whey could produce the novel food ingredient fortified with biologically active compounds including GABA, ${\gamma}$-PGA, peptides, and probiotics.

CHEMICAL AND MICROBIOLOGICAL ANALYSIS OF GOAT MILK, CHEESE AND WHEY BY NIRS

  • Perez Marin, M.D.;Garrido Varo, A.;Serradilla, J.M.;Nunez, N.;Ares, J.L.;Sanchez, J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1513-1513
    • /
    • 2001
  • Present Food Legislation compels dairy industry to carry out analyses in order to guarantee the food safety and quality of products. Furthermore, in many cases industry pays milk according to bacteriological or/and nutritional quality. In order to do these analyses, several expensive instruments are needed (Milkoscan, Fossomatic, Bactoscan). NIRS technology Provides a unique instrument to deal with all analytical requirements. It offers as main advantages its speed and, specially, its versatility, since not only allows determine all the parameters required in milk analysis, but also allows analyse other dairy products, like cheese or whey. The objective of this study is to develop NIRS calibration equations to predict several quality parameters in goat milk, cheese and whey. Three sets of 123 milk samples, 190 cheese samples and 109 whey samples, have been analysed in a FOSS NIR Systems 6500 I spectrophotometer equipped with a spinning module. Milk and whey were analysed by folded transmission, using circular cells with gold surface and pathlength of 0.1 m, while intact cheese was analysed by reflectance using standard circular cells. NIRS calibrations were obtained for the prediction of chemical composition in goat milk, for fat (r$^2$=0.92; SECV=0.20%), total solids (r$^2$=0.95: SECV=0.22%), protein (r$^2$=0.94; SECV=0.07%), casein (r$^2$=0.93; SECV=0.07%) and lactose (r$^2$=0.89; SECV=0.05%). Moreover, equations have been performed to determine somatic cells (r$^2$=0.81; SECV=276.89%) and total bacteria (r$^2$=0.58; SECV=499.32%) counts in goat milk. In the case of cheese, calibrations were obtained for the prediction of fat (r$^2$=0.92; SECV=0.57), total solids (r$^2$=0.80; SECV=0.92%) and protein (r$^2$=0.70; SECV=0.63%). In whey, fat (r$^2$=0.66; SECV=0.08%), total solids (r$^2$=0.67; SECV=0.19%) and protein (r$^2$=0.76; SECV=0.07%) NIRS equations were obtained. These results proved the viability of NIRS technology to predict chemical and microbiological parameters and somatic cells count in goat milk, as well as chemical composition of goat cheese and whey.

  • PDF

Development of Fresh Cheeses and Whey Drinks Using Milk Components (우유 성분을 이용한 생치즈와 유청 음료의 개발)

  • Park, In-Duck;Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.209-214
    • /
    • 1992
  • In order to save foreign currency and to domesticize the dairy products, various fresh cheeses and whey drinks were developed and some physicochemical, microbiological and sensory evaluation were performed. The yield of fresh cheese was 22.3%, while that of whey 77.7%. The pH-values of fresh cheeses were $5.90{\sim}6.49$, while those of whey drinks $6.07{\sim}6.49$, and fermented whey drinks $3.97{\sim}4.91$. The acidities of fresh cheeses were $0.09{\sim}0.26%$, while those of whey drinks $0.09{\sim}0.36%$. The contents of solid substances, protein and lactose in fresh cheeses were $25.67{\sim}34.18%$, $7.45{\sim}9.11%$ and $3.61{\sim}4.14%$, while those of whey drinks $7.39{\sim}7.70%$, $0.88{\sim}0.94%$ and $4.93(\sim}6.17%$, respectively. The lactic acid contents of whey drinks varied from $0.01{\sim}0.38%$, where the content in the fermented sample was the highest. The general colony counts of fresh cheeses were $0{\sim}30/g$, while those of whey drinks $0{\sim}80/ml$. The psychrotrophs counts of fresh cheeses were $0{\sim}20/g$, while those of whey drinks $0{\sim}60/ml$. Lactic acid bacterial counts in both products were not detected except for $97{\sim}401{\times}10^8/ml$ in fermented whey drinks. E. coli and fungi were not detected in both products. In sensory evaluation of both products, the strawberry added fresh cheese was the best of fresh cheeses, while the garlic added fresh cheese was the worst. Pure whey drink was the best of whey drinks, while the ginseng added whey drink was the worst.

  • PDF

Research Trend of Lactulose Production from Lactose (젖당(Lactose)으로부터 락툴로오스(Lactulose) 생산을 위한 연구 동향)

  • Lee, Ja Hyun;Yoo, Hah Young;Jung, Da Un;Park, Charnho;Song, Yoon Seok;Park, Chulhwan;Kim, Seung Wook
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.407-412
    • /
    • 2014
  • Lactulose is well known for functional component in the food and pharmaceutical field and utilized in a wide variety of foods as a bifidus factor or functional ingredient for intestinal regulation. Lactulose synthesis can be classified into chemical and biological methods. In chemical methods, lactulose is synthesized by alkaline isomerization, but it has many disadvantages such as including product purification, lactulose degradation, side reactions and waste management. Therefore, the enzymatic synthesis methods were recently studied to solve these problems. ${\beta}$-galactosidase is a important enzyme in the dairy industry, because of the production of lactose-hydrolyzed products. Also, ${\beta}$-galactosidases can be utilized to synthesize lactulose from lactose by a trans-galactosylation reaction, using fructose as a galactosyl acceptor. However, the synthesis of lactulose from lactose is economically not suitable due to high levels of lactose price. This review summarizes the current state of lactulose production by chemical and biological processes.

Formation of Fruit Aroma Compounds from Whey by Kluyverumyces lactis (Kluyveromyces lactis에 의한 유청으로부터 과일향 성분의 생성)

  • 김소미;이형주
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.536-541
    • /
    • 1991
  • To enhance the productivity of fruit flavor compounds from whey by the lactose fermenting yeast, Kluyveromyces lactzs ATCC 8585 was treated with N-methyI-N'-nitro-N-nitrosoguanidine (NTG). After the NTG treatments, a mutant showing resistance to antifungal activity of geraniol, and strong fruity but low yeasty flavor was selected and named as K. lactis 450 K. Flavor compounds from 3-day culture broth were extracted with pentane-dichloromethane (2:l) and the concentrated oleoresins were analyzed by gas chromatography. The mutant strain produced more classes and larger amount of flavor compounds than the parent stlain. Tentatively identified volatile compounds from the culture of the mutant were: terpenes such as myrcenol; alcohols such as cis-3-hexenol, n-hexanol; esters such as ethyl isovalerate, cis- 3-hexenyl n-butyrate, n-amyl-n-hexanoate, phenyl ethyl n-propioate; ketones such as methyl vinyl ketones; other compounds such as vanillin, 3-methylcoumarin.

  • PDF

A Study on the Physicochemical Properties and Antioxidative Activity of Whey Protein Isolate (WPI의 이화학적 특성과 항산화성에 관한 연구)

  • Ahn, Myung-Soo;Kim, Chan-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.1
    • /
    • pp.97-103
    • /
    • 2007
  • In this study, physicochemical properties and the antioxidative activity of whey protein isolate(WPI) for com germ oil were measured. The pH of WPI was 6.26, and the titrable acidity was 0.18%. The WPI’s moisture content was 5.2% and each of the other element content such as lactose, crude protein, crude ash and crude fat was found to be 0.8%, 90.7%, 2.7% and 0.6%, respectively. The amounts of active SH group in WPI 9 ${\mu}$ M-g and total colony counts of bacteria was 5.9 ${\times}$ 10$^3$ CFU-g. ${\alpha}$-Lactalbumin, ${\beta}$-lactoglobulin and bovine serum albumin(BSA) were shown in WPI as major protein by electrophoresis. The antioxidative effect of WPI and other antioxidants on com germ oil used as substrate was determined by peroxide value(POV) and conjuqated dienoic acid value(CDV). By these results, the order of antioxidative effects could be defined as BHT 0.02%>ascorbic acid 0.1%>WPI 0.1%>WPI 0.02%>ascorbic acid 0.02%>control>tocopherol 0.02%>tocopherol 0.1%, respectively. Also the induction period of com germ oil added with WPI was longer by 1.6 times than that of control(none added any antioxidant). Therefore the fact suggested that WPI could be utilized as a good antioxidative agents.

Physicochemical and Functional Properties of Commercial Whey Powders (시판 유청분말의 이화학적 및 기능적 특성)

  • Cho, Soo-Jin;Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.151-155
    • /
    • 1995
  • In order to understand some physicochemical and functional properties of whey powders, imported and domestic products were analyzed. The pH values of imported whey powder solution were $5.85{\sim}6.33$, while those of domestic $5.70{\sim}6.43$. The titratable acidity values of imported whey powders were $0.11{\sim}0.18%$, while those of domestic products $0.10{\sim}0.24%$. The contents of moisture, crude ash, protein, lipid and lactose of the imported whey powder were $1.31{\sim}2.10%,\;7.37{\sim}7.49%,\;11.54{\sim}12.14%,\;0.82{\sim}1.40%\;and\;64.43{\sim}72.66%$, respectively, while those of domestic products $2.11{\sim}2.81%,\;5.39{\sim}8.03%,\;10.41{\sim}20.03%,\;1.88{\sim}2.54%\;and\;54.32{\sim}68.42%$, respectively. The active SH group contents of imported whey powders were $0.36{\sim}0.82{\mu}M/g$, while those of domestic products ranged $0.29{\sim}4.83{\mu}M/g$. The protein solubility of imported whey powders were $54.50{\sim}82.26%$, while that of domestic products $26.93{\sim}68.44%$. The emulsifying capacity and the emulsion stability of imported whey powders were $5.83{\sim}12.53cm^{2}/g$ and $10.24{\sim}12.45%$, respectively, while those of domestic products $6.19{\sim}11.28cm^{2}/g$ and $7.28{\sim}9.93%$, respectively. The foam overrun and stability of imported whey powders were $4.34{\sim}5.54%$ and $0.49{\sim}0.66%$, respectively, while those of domestic products $2.56{\sim}4.24%$ and $0.15{\sim}0.35%$, respectively.

  • PDF

Preparation of a Functional Drink by Mixed Fermentation of Oak Mushrooms Extract and Whey (유청과 표고버섯 추출물의 혼합 발효를 통한 기능성 음료 제조)

  • Yang, Hee-Sun;Jo, Jun-Hee;Choi, Yu-Jin;Jung, Hoo-Kil;Park, Tae-Young;Jin, Seong-Woo;Choi, Bong-Suk;Seo, Kyoung-Sun;Huh, Chang-Ki
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.111-119
    • /
    • 2014
  • This study was carried out to investigate the quality characteristics and antioxidant activity of a functional drink prepared by mixed fermentation of oak mushroom extract and whey. As the ratio of oak mushroom extract increased, the pH value of the whey fermentative solution decreased proportionally, and the titratable acidity increased significantly. The number of lactic acid bacteria after 24 hours of culture was at a level of $10^{11}CFU/mL$ in all whey fermentative solutions containing oak mushroom extracts. DPPH and ABTS radical scavenging activities after 24 hours of culture were higher in a fermentative solution containing oak mushroom extract than in the control. After 24 hours of culture, the nitric oxide production in whey fermentation solution by LPS-induced RAW 264.7 cells was lower compared to that in whey fermentation solution with oak mushroom. Sensory evaluation revealed that, color, flavor, taste, and overall acceptability of the whey fermentation solution sample, which contained 1.0% oak mushroom extract, were much better than those of the other groups. Sensory evaluation of a whey drink containing oak mushroom flavor indicated that the whey drink containing 0.001% oak mushroom flavor was better than the other samples.

  • PDF

Characterizations of Kefir Grains in Fermented Whey and Their Effects on Inflammatory Cytokine Modulation in Human Mast Cell-1 (HMC-1) (Kefir grain에 의한 유청발효액의 특성과 human mast cell-1 (HMC-1)에서 염증 cytokine 조절에 미치는 영향)

  • Son, Ji Yoon;Park, Young W.;Renchinkhand, Gereltuya;Han, Jung Pil;Bum, Jin Woo;Paik, Seung-Hee;Lee, Jo Yoon;Nam, Myoung Soo
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.689-697
    • /
    • 2016
  • Kefir is an acidic-alcoholic fermented milk product originating from the Caucasian mountains. Kefir has long been known for its probiotic health benefits, including its immunomodulatory effects. The objectives of this study were to investigate the properties of a fermented whey product and to examine the effects of kefir grains on the in vitro immune-modulation of human mast cell-1 (HMC-1). The results showed that the whey fermented by kefir grains contained the maximum lactic acid bacteria and yeast for 16 hr by 1.83×108 and 6.5×105 CFU/ml, respectively, and lactose and whey proteins were partially hydrolyzed. The experimental whey fermented by kefir grains exhibited an in vitro anti-inflammatory effect on the HMC-1 line for 8, 16, and 24 hr, and this effect induced the expression of interleukin (IL)-4 as a pro-inflammatory cytokine, but not for 48 hr by RT-PCR in HMC-1 cells. In addition, the same phenomenon was observed for the expression of IL-8 as a pro-inflammatory cytokine by the kefir-fermented whey during the same periods of 8-48 hr under the same conditions. These cytokines resulted in the production of IL-4 at 20-25 ng in HMC-1 cells for 8, 16, and 24 hr, whereas 5 ng was produced for 48 hr by the fermented whey. In contrast, IL-8 was produced at 15-20 ng in HMC-1 cells during 4, 8, 16, and 24 hr, while 7 ng was produced at 48 hr. It was concluded that the whey fermented by kefir grains possesses a potential anti-inflammatory function, which could be used for an industrial application as an ingredient of functional foods and pharmaceutical products.