• Title/Summary/Keyword: wheel-rail profile

Search Result 40, Processing Time 0.025 seconds

A Study on the Characteristics of the Wheel/Roller Contact Geometry (차륜/궤조륜 기하학적 접촉특성에 관한 연구)

  • Hur, Hyun-Moo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.618-623
    • /
    • 2006
  • Understanding the contact between wheel and rail is a starting point in railway vehicle dynamic research area and especially analysis for the contact geometry between wheel and rail is important. On the one hand, the critical speed as the natural characteristics of rolling-stock is generally tested on the roller rig. The geometrical characteristics of the wheel/roller contact on the roller rig are different from these of the general wheel/rail contact because the longitudinal radius of roller is not infinite compared with rail. Thus, in this paper we developed the algorithm to analyze the wheel/roller contact geometry of our roller rig which is constructed now and analyzed the difference between whee/roller contact and wheel/rail contact. In conclusion, we found that the yaw motion of wheelset and the roller radius influence the geometrical contact parameters in wheel flange contact area.

Design of Wheel Profile to Reduce Wear of Railway Wheel (곡선부에서 차륜 마모 저감을 위한 차륜답면 형상 설계)

  • Choi, Ha-Young;Lee, Dong-Hyong;Song, Chang-Yong;Lee, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.607-612
    • /
    • 2012
  • The wear problem of wheel flange occurs at sharp curves of rail. This paper proposes a procedure for optimum design of a wheel profile wherein flange wear is reduced by improving an interaction between wheel and rail. Application of optimization method to design problem mainly depends on characteristics of design space. This paper compared local optimization method with global optimization according to sensitivity value of objective function for design variables to find out which optimization method is appropriable to minimize wear of wheel flange. Wheel profile is created by a piecewise cubic Hermite interpolating polynomial and dynamic performances are analyzed by a railway dynamic analysis program, VAMPIRE. From the optimization results, it is verified that the global optimization method such as genetic algorithm is more suitable to wheel profile optimization than the local optimization of SQP (Sequential Quadratic Programming) in case of considering the lack of empirical knowledge for initial design value.

Effects of Wheel Profile on KTX Dynamic Characteristics (차륜답면 형상변화에 따른 KTX의 동특성)

  • 장종기;이승일;최연선
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.259-263
    • /
    • 2004
  • The running safety of a railway vehicle depends on the design parameters and contact condition between wheel and rail. In this study, the effect of the conicity of wheel tread is analyzed using ADAMS/RAIL software on running situation. Modal analysis shows in 0.6 Hz natural frequency of lateral mode in fully arranged the KTX cars. The excessive vibration of the tail cars occurs in the 17th car as the speed and the stiffness of the secondary suspension increases, and especially for 1/40 conicity of the GV40 wheel. Also, the analysis shows that combination of wheel profile, GV40 for power cars and XP55 for passenger cars can reduce the lateral vibration of the tail cars.

A Study on the dynamic behavior of rail due to dipped joints (레일이음매의 동적거동에 대한 연구)

  • Kang, Yun-Suk;Yang, Shin-Chu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.328-333
    • /
    • 2002
  • When vehicle travelling along the track which has irregularity such as vertical profile, dynamic forces arise at the Wheel/Rail contact patch by wheel/rail interaction. In particular short wavelength irregularities on dipped joint and small stiffness of connecting rail bring about intense wheel/rail dynamic effects at higher speed. In the paper, a new model for dipped joint rail is developed to study dynamic behavior of track. A cusp behavior on dipped joint was defined by its amplitude and decay factor, which was presented by FRA track classes. The result of case study are presented, which show wheel rail contact force in each track classes, train operation speed and bending flexible rigidity ratio of fishplates which are connecting the rail.

  • PDF

Worn Wheel/Rail Contact Simulation and Cultivated Shear Stresses

  • Noori, Ziaedin;Shahravi, Majid;Rezvani, Mohammad Ali
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Railway system is today the most efficient way for transportation in many cases in several forms of application. Yet, wear phenomenon, profile evolution, fatigue, fracture, derailment are the major worries (financial and safety) in this system which force significant direct and indirect maintenance costs. To improve the cyclic maintenance procedures and the safety issues, it can be very satisfactory to be informed of the state of wheel/rail interaction with mileage. In present paper, an investigation of the behavior of the shear stresses by logged distance is approached, by implementing the field measurement procedure, in order to determine the real conduct of the most important cause of defects in wheel/rail contact, shear stress. The results coming from a simulation procedure indicate that the amounts of shear stresses are still in high-magnitudes when the wheel and rail are completely worn; even though in simulation based on the laboratory measurements of profile evolutions, the stresses become significantly reduced by logged distance.

Evaluation of Field Calibration Test on Rail for Train Wheel Force Measurement

  • Sim, Hyoung-Bo;Yeo, Inho
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • An accurate measurement of the train-track interaction forces is important for track performance evaluation. In the field calibration test as a wheel load measurement process, the calibration system creates a different boundary condition in comparison with that in the train wheel passage. This study aims to evaluate a reliability of the field calibration test in the process of wheel load measurement. Finite element models were developed to compare the deformed shapes, bending moment and shear force profiles on the rail section. The analysis results revealed that the deformed shapes and their associated bending moment profiles on the rail are significantly different in two numerical simulations of the calibration test and the train wheel load passage. However, the shear stress profile on the rail section of the strain gauge installation in the field was almost identical, which may imply that the current calibration test is sufficiently reliable.

A Study on Dynamic Modeling and Analysis of a Wheelset (휠셋의 동역학 모델링 및 해석에 관한 연구)

  • Kang, Ju-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1851-1855
    • /
    • 2011
  • The accuracy of wheel-rail contact analysis is mainly determined by the methods to find wheel-rail contact points and to calculate contact forces. The 2-dimensional approach which calculates contact points based on the profile curves of the wheel and rail has advantage of reducing calculation time but shortage of approximating the solutions when comparing with 3-dimensional analysis In this analysis, wheelset dynamic behaviors calculated by the approach based on the 2-dimensional wheel-rail curves are compared with those by the 3-dimensional wheel-rail surfaces. Yaw angle and lateral displacement of wheelset center are compared when negotiating a curve.

  • PDF

Utilization of wheel derailment test facilities (차륜탈선 시험설비의 활용방안)

  • Ham, Young-Sam;You, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1128-1133
    • /
    • 2011
  • This is a testing equipment system to analyze variation of creep force according to wheel-rail tread profile, running speed of vehicle, vertical and lateral force, wheel/rail contact point, attack angle and so on. The creep force affect vehicle derailment, especially climbing derailment. This system is composed of main frame, wheelset and rail disks driver, hydraulic actuator, controller, environmental chamber, safety system and so on.

  • PDF

Design Method of Railway Wheel Profile with Objective Function of Eqivalent Conicity (등가답면구배를 목적함수로 하는 차륜답면형상 설계기법)

  • Hur, Hyun-Moo;You, Won-Hee;Park, Joon-Hyuk;Kim, Min-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.13-19
    • /
    • 2010
  • A design method of railway wheel profile with objective function of equivalent conicity considering wheel dimension constraint, two points contact problem between wheel and rail was proposed. New design method shows good results. New wheel profile generated from optimization process shows better dynamic performance compared with initial profile as the purpose of wheel profile design. And to verify the design method with testing the stability of new wheel profile, we conducted a critical speed test for new wheel profile using scale model applied scaling method of railway vehicle dynamics. The result of critical speed test show good agreement with that of numerical analysis. From the above results, it is seen that the design method with objective function of equivalent conicity is feasible and it could be applied to design new wheel profile efficiently.