• 제목/요약/키워드: wheel-based navigation

Search Result 41, Processing Time 0.032 seconds

A Guideline Tracing Technique Based on a Virtual Tracing Wheel for Effective Navigation of Vision-based AGVs (비전 기반 무인반송차의 효과적인 운행을 위한 가상추적륜 기반 유도선 추적 기법)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.539-547
    • /
    • 2016
  • Automated guided vehicles (AGVs) are widely used in industry. Several types of vision-based AGVs have been studied in order to reduce cost of infrastructure building at floor of workspace and to increase flexibility of changing the navigation path layout. A practical vision-based guideline tracing method is proposed in this paper. A virtual tracing wheel is introduced and adopted in this method, which enables a vision-based AGV to trace a guideline in diverse ways. This method is also useful for preventing damage of the guideline by enforcing the real steering wheel of the AGV not to move on the guideline. Usefulness of the virtual tracing wheel is analyzed through computer simulations. Several navigation tests with a commercial AGV were also performed on a usual guideline layout and we confirmed that the virtual tracing wheel based tracing method could work practically well.

Implementation of Real-time Wheel Order Recognition System Based on the Predictive Parameters for Speaker's Intention

  • Moon, Serng-Bae;Jun, Seung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.35 no.7
    • /
    • pp.551-556
    • /
    • 2011
  • In this paper new enhanced post-process predicting the speaker's intention was suggested to implement the real-time control module for ship's autopilot using speech recognition algorithm. The parameter was developed to predict the likeliest wheel order based on the previous order and expected to increase the recognition rate more than pre-recognition process depending on the universal speech recognition algorithms. The values of parameter were assessed by five certified deck officers being good at conning vessel. And the entire wheel order recognition process were programmed to TMS320C5416 DSP so that the system could recognize the speaker's orders and control the autopilot in real-time. We conducted some experiments to verify the usefulness of suggested module. As a result, we have confirmed that the post-recognition process module could make good enough accuracy in recognition capabilities to realize the autopilot being operated by the speech recognition system.

Mobile Robot Localization Using Optical Flow Sensors

  • Lee, Soo-Yong;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.485-493
    • /
    • 2004
  • Open-loop position estimation methods are commonly used in mobile robot applications. Their strength lies in the speed and simplicity with which an estimated position is determined. However, these methods can lead to inaccurate or unreliable estimates. Two position estimation methods are developed in this paper, one using a single optical flow sensor and a second using two optical sensors. The first method can accurately estimate position under ideal conditions and also when wheel slip perpendicular to the axis of the wheel occurs. The second method can accurately estimate position even when wheel slip parallel to the axis of the wheel occurs. Location of the sensors is investigated in order to minimize errors caused by inaccurate sensor readings. Finally, a method is implemented and tested using a potential field based navigation scheme. Estimates of position were found to be as accurate as dead-reckoning in ideal conditions and much more accurate in cases where wheel slip occurs.

Two Feature Points Based Laser Scanner for Mobile Robot Navigation (레이저 센서에서 두 개의 특징점을 이용한 이동로봇의 항법)

  • Kim, Joo-Wan;Shim, Duk-Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • Mobile robots use various sensors for navigation such as wheel encoder, vision sensor, sonar, and laser sensors. Dead reckoning is used with wheel encoder, resulting in the accumulation of positioning errors. For that reason wheel encoder can not be used alone. Too much information of vision sensors leads to an increase in the number of features and complexity of perception scheme. Also Sonar sensor is not suitable for positioning because of its poor accuracy. On the other hand, laser sensor provides accurate distance information relatively. In this paper we propose to extract the angular information from the distance information of laser range finder and use the Kalman filter that match the heading and distance of the laser range finder and those of wheel encoder. For laser scanner with one feature point error may increase much when the feature point is variant or jumping to a new feature point. To solve the problem, we propose to use two feature points and show that the positioning error can be reduced much.

A Study on a Power Transmission Line Mobile Robot for Bundled Conductor Navigation

  • Seok, Kwang-Ho;Kim, Yoon Sang
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.155-161
    • /
    • 2019
  • We introduces a mobile robot that can navigate on a power transmission line arranged in bundled conductors. The designs of the proposed robot are performed for navigation on bundled conductors, and the navigation method for bundled conductors and obstacle avoidance are presented. The robot consists of 13 degrees of freedom (DOF) with a symmetrical structure for the left and right parts, including the four wheel joints. The navigation method is designed using a combination of three motion primitives such as linear motion of counterbalancing box, linear motion of robot arm, and rotational motion of wheel part. To examine the performance of the proposed robot, navigation simulations are conducted using $ADAMS^{TM}$. The robot navigations were simulated on obstacle environments that consisted of two- and four-conductor bundles. Based on the simulation results, the performance of the proposed robot was reviewed through the analysis of the trajectories of end-effectors. We confirmed that the proposed robot was capable of achieving optimal navigation on bundled conductors that included obstacles.

Ackermann Geometry-based Analysis of NHC Satisfaction of INS for Vehicular Navigation according to IMU Location

  • Cho, Seong Yun;Chae, Myeong Seok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, we analyze the Non-Holonomic Constraint (NHC) satisfaction of Inertial Navigation System (INS) for vehicular navigation according to Inertial Measurement Unit (IMU) location. In INS-based vehicle navigation, NHC information is widely used to improve INS performance. That is, the error of the INS can be compensated under the condition that the velocity in the body coordinate system of the vehicle occurs only in the forward direction. In this case, the condition that the vehicle's wheels do not slip and the vehicle rotates with the center of the IMU must be satisfied. However, the rotation of the vehicle is rotated by the steering wheel which is controlled based on the Ackermann geometry, where the center of rotation of the vehicle exists outside the vehicle. Due to this, a phenomenon occurs that the NHC is not satisfied depending on the mounting position of the IMU. In this paper, we analyze this problem based on Ackermann geometry and prove the analysis result based on simulation.

A Study on the Implementation of RFID-based Autonomous Navigation System for Robotic Cellular Phone(RCP)

  • Choe, Jae-Il;Choi, Jung-Wook;Oh, Dong-Ik;Kim, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.457-462
    • /
    • 2005
  • Industrial and economical importance of CP(Cellular Phone) is growing rapidly. Combined with IT technology, CP is currently one of the most attractive technologies for all. However, unless we find a breakthrough to the technology, its growth may slow down soon. RT(Robot Technology) is considered one of the most promising next generation technology. Unlike the industrial robot of the past, today's robots require advanced technologies, such as soft computing, human-friendly interface, interaction technique, speech recognition, object recognition, and many others. In this study, we present a new technological concept named RCP(Robotic Cellular Phone), which combines RT & CP, in the vision of opening a new direction to the advance of CP, IT, and RT all together. RCP consists of 3 sub-modules. They are $RCP^{Mobility}$, $RCP^{Interaction}$, and $RCP^{Interaction}$. $RCP^{Mobility}$ is the main focus of this paper. It is an autonomous navigation system that combines RT mobility with CP. Through $RCP^{Mobility}$, we should be able to provide CP with robotic functionalities such as auto-charging and real-world robotic entertainments. Eventually, CP may become a robotic pet to the human being. $RCP^{Mobility}$ consists of various controllers. Two of the main controllers are trajectory controller and self-localization controller. While Trajectory Controller is responsible for the wheel-based navigation of RCP, Self-Localization Controller provides localization information of the moving RCP. With the coordinate information acquired from RFID-based self-localization controller, Trajectory Controller refines RCP's movement to achieve better RCP navigations. In this paper, a prototype system we developed for $RCP^{Mobility}$ is presented. We describe overall structure of the system and provide experimental results of the RCP navigation.

  • PDF

A Correction System of Odometry Error for Map Building of Mobile Robot Based on Sensor fusion

  • Hyun, Woong-Keun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.709-715
    • /
    • 2010
  • This paper represents a map building and localization system for mobile robot. Map building and navigation is a complex problem because map integrity cannot be sustained by odometry alone due to errors introduced by wheel slippage, distortion and simple linealized odometry equation. For accurate localization, we propose sensor fusion system using encoder sensor and indoor GPS module as relative sensor and absolute sensor, respectively. To build a map, we developed a sensor based navigation algorithm and grid based map building algorithm based on Embedded Linux O.S. A wall following decision engine like an expert system was proposed for map building navigation. We proved this system's validity through field test.

Optimal Feature Parameters Extraction for Speech Recognition of Ship's Wheel Orders (조타명령의 음성인식을 위한 최적 특징파라미터 검출에 관한 연구)

  • Moon, Serng-Bae;Chae, Yang-Bum;Jun, Seung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.161-167
    • /
    • 2007
  • The goal of this paper is to develop the speech recognition system which can control the ship's auto pilot. The feature parameters predicting the speaker's intention was extracted from the sample wheel orders written in SMCP(IMO Standard Marine Communication Phrases). And we designed the post-recognition procedure based on the parameters which could make a final decision from the list of candidate words. To evaluate the effectiveness of these parameters and the procedure, the basic experiment was conducted with total 525 wheel orders. From the experimental results, the proposed pattern recognition procedure has enhanced about 42.3% over the pre-recognition procedure.

  • PDF

Development of an Autonomous Navigation System for Unmanned Ground Vehicle

  • Kim, Yoon-Gu;Lee, Ki-Dong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.4
    • /
    • pp.244-250
    • /
    • 2008
  • This paper describes the design and implementation of an unmanned ground vehicle (UGV) and also estimates how well autonomous navigation and remote control of UGV can be performed through the optimized arbitration of several sensor data, which are acquired from vision, obstacle detection, positioning system, etc. For the autonomous navigation, lane detection and tracing, global positioning, and obstacle avoidance are necessarily required. In addition, for the remote control, two types of experimental environments are established. One is to use a commercial racing wheel module, and the other is to use a haptic device that is useful for a user application based on virtual reality. Experimental results show that autonomous navigation and remote control of the designed UGV can be achieved with more effectiveness and accuracy using the proper arbitration of sensor data and navigation plan.

  • PDF