• Title/Summary/Keyword: wheel shake

Search Result 12, Processing Time 0.027 seconds

The Study on the Influence Analysis of Shimmy&Shake due to Tire Design Parameters (타이어 설계인자별 Shimmy&Shake 영향도 분석에 관한 연구)

  • Bae, Chul-Yong;Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Koo, Byoung-Kook;Rho, Guck-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.415-420
    • /
    • 2007
  • The objective of this study analyzes the influence of shimmy & shake phenomena due to tire design parameters which are RFV(radial force variation), DB(dynamic balance), RRO(radial run out) and air pressure. These parameters are inspection items for Q.C. after tires are manufactured. In order to analyze these parameters on this study, vehicle driving tests were achieved. The test modes are two type which are constant speed and coast-down driving. On this tests the dynamic characteristics of shimmy & shake are measured by the 3-axises accelerometers at the various positions that are knuckle(left & right), rack pinion, seat and steering wheel. In according to analyzed results, the longitudinal vibration of knuckle parts affects the lateral vibration of rack pinion and this vibration affects the lateral vibration of steering wheel that is the shimmy phenomena. Also the over and under DB by comparison with normal DB and the increment of RRO affect the occurrence of shimmy & shake phenomena.

  • PDF

Experimental Analysis for Steering Wheel Shimmy in Passenger Vehicle (승용차의 조타륜 쉬미에 대한 실험적 고찰)

  • 배병국;허필정;유병규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.439-443
    • /
    • 2001
  • The steering wheel vibrations such as shimmy, brake judder and shake are affected by the vibration characters of steering and suspension. For the analysis of shimmy, nonuniformities of tire can be considered the major sources. This study investigates unbalances and uniformities of tire in which the lateral force variation is highly correlated with shimmy. The hardness of suspension bushes can be modified to change the dynamic behavior of suspension that is effective to reduce the sensitivity of shimmy.

  • PDF

The Improvements of Vehicle Vibration Characteristics Using Modal Contribution (모우드 기여도 분석을 이용한 차량의 진동특성 개선)

  • 안지훈;지상현;고병식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.51-56
    • /
    • 1998
  • This paper presents modal contribution method to reduce vehicle vibration. Normal mode analysis is performed to obtain modal vector matrix. The proposed method uses this modal vector matrix to evaluate forced response of an active mode to the applied engine forces and the rotating force due to wheel unbalance mass. Comparing the responses, of the specific active mode with one another, it can be easily done to determine most contributed mode in the interesting frequency band. Then we can find dominant bushes by the strain energy distribution of the mode. Vibration response is decrease with modification of those bushes.

  • PDF

An Optimal Design of the Front Wheel Drive Engine Mount System (전륜구동형 승용차의 엔진마운트 시스템 최적설계)

  • Kim, M.S.;Kim, H.S.;Choi, D.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.74-82
    • /
    • 1993
  • Optimal designs of a 3-point and a 4-point engine mount system are presented for reducing the idle shake of a Front Wheel Drive(FWD) vehicle. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is minimizing the transmitted force without violating the constraints such as static weight sag, resonant frequency and side limits of design variables. The Augmented Lagrange Multiplier(ALM) Method is used for solving the nonlinear constrained optimization. The generalized Jacobi and the impedence method are employed for a free vibration analysis and a forced response analysis. The trend of analysis results well meet that of the experimental results. The optimization results reveal that the 4-point system transmits less torque than the 3-point system. It is also found from the design sensitivity analysis that the vibration characteristics of the 4-point system is less sensitive than those of the 3-point system.

  • PDF

Automotive Body Design (차량 차체 설계)

  • Lee, Jeong-Ick;Kim, Byoun-Gon;Chung, Tae-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.10-22
    • /
    • 2008
  • In an automotive body structure, a design configuration that fulfills structural requirements such as deflection, stiffness and strength is necessary for structural design and is composed of various components. The integrated design is used to obtain a minimum weight structure with optimal or feasible performance based on conflicting constraints and boundaries. The mechanical design must begin with the definition of one or more concepts for structure and specification requirements in a given application environment. Structural optimization is then introduced as an integral part of the product design and used to yield a superior design to the conventional linear one. Although finite element analysis has been firmly established and extensively used in the past, geometric and material nonlinear analyses have also received considerable attention over the past decades. Also, nonlinear analysis may be useful in the area of structural designs where instability phenomena can include critical design criteria such as plastic strain and residual deformation. This proposed approach can be used for complicated structural analysis for an integrated design process with the nonlinear feasible local flexibilities between system and subsystems.

Steering Wheel Vibration Control by Applying a 2-Mode Dynamic Damper (2-모드 동흡진기를 이용한 조향계의 진동제어에 관하여)

  • 김중희;정승균;최성표
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.37-45
    • /
    • 1987
  • 최근의 경량화 췌ㅅ로 말미암아 승용차의 차체는 박판일체식 구조로 제작되어 구조적 강성의 약화를 가져 왔으며 이로 인하여 외부의 요인으로부터 발생되는 승용차의 진동문제는 더욱 악화되고 해결하기 어렵게 되어가고 있다. 이 논문에서는 이러한 여러가지 문제로 인하여 전륜구동형 승용차의 조향계에서 발생되는 Shake와 Shimmy를 2-모드 동흡진기를 사용하여 제어하고자 하며 실제적으로 시작품을 제작하여 실차상태에서 확인시험을 실시하였다.

  • PDF

Vehicle Vibration Study by Tire Flat Spot (타이어 플랫 스팟에 의한 차량진동 연구)

  • Park, Ju-Pyo;Choi, Jung-Hyun;Lee, Sang-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1395-1400
    • /
    • 2007
  • Tire flat spot is a deformation which occurs around the contact patch during long-period parking and does hardly recovered even after driving. The deformation makes a tire self-excited and ride comfort gets worse. In this study, it is shown that the flat spot can be evaluated by measuring change in radial run out or force. Its effects on vibration at vehicle floor and steering wheel are also revealed. Finally it is shown that the flat spot is likely to occur if the inflation pressure is low and the tire is suppressed by a heavy load at a high temperature.

  • PDF

Pareto Optimal Design of the Vehicle Body (차체의 팔렛토 최적 설계)

  • Kim, Byoung-Gon;Chung, Tae-Jin;Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2008
  • The important dynamic specifications in the aluminum automobile body design are the vibrations and crashworthiness in the views of ride comforts and safety. Thus, considerable effort has been invested into improving the performance of mechanical structures comprised of the interactive multiple sub-structures. Most mechanical structures are complex and are essentially multi-criteria optimization problems with objective functions retained as constraints. Each weight factor can be defined according to the effects and priorities among objective functions, and a feasible Pareto-optimal solution exists for the criteria-defined constraints. In this paper, a multi-criteria design based on the Pareto-optimal sensitivity is applied to the vibration qualities and crushing characteristics of front structure in the automobile body design. The vibration qualities include the idle, wheel unbalance and road shake. The crushing characteristic of front structure is the axial maximum peak load.

Shimmy Phenomena of Steering Wheel Due to the Tire Uniformity (타이어 유니포머티에 기인한 조향휠의 시미현상 연구)

  • Kim, Jong-Kwan;Song, Sang-Kee;Oh, Jin-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.54-59
    • /
    • 1997
  • The vehicle vibrations result from the exciting forces which are caused by air resistance, engine firing, tire mass unbalance and tire uniformity. Especially, the shake and shimmy phenomena in the steering system are closely related to the vehicle vibration, the tire unbalance, and the tire uniformity. This study presents the shimmy phenomena due to the tire mass unbalance and the tire uniformity in order to investigate their effects.

  • PDF

Failure Examples Study for Tribological Characteristics of Drive Shaft and Axle System in Vehicles (자동차 드라이브 샤프트와 액슬 시스템의 트라이볼로지적인 특성에 관한 고장사례 고찰)

  • Lee, Il Kwon;Moon, Hak Hoon;Youm, Kwang Wook
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.397-402
    • /
    • 2013
  • This study examined the tribological characteristics of the drive shaft and axle system in vehicles. The first drive shaft example contained end play for a CV joint that transferred part of the transmission power to the wheel. The joint part of the drive shaft was deformed because of reduced durability due to wear. Thus, vibrations caused the body to shake and become unbalanced when the drive shaft transferred the power. The second example was the cross-section of a shaft that connected the slip-connection of the propeller shaft on the input side to the yoke flange of the output side; the durability was reduced because of corrosion. End play caused by wear between the bearing and cross-section shaft appeared to cause shaking. In the third example, a grease leak reduced lubrication and thus caused damage to the hub bearing and inside the knuckle. The failure was produced by sticking. The fourth example had noise produced by the gear and gear transfer. This was due to the backlash of the pinion and few ring gears for the differential gear. Therefore, drive shaft and axle systems must be thoroughly checked and managed to minimize and reduce failure phenomena.