• 제목/요약/키워드: wheel rail contact

검색결과 224건 처리시간 0.127초

모드 해석과 충격 가진을 이용한 차륜 진동에 대한 연구 (A study on the wheel vibration using modal analysis and impact test)

  • 이태욱;우관제;김종년;이화수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.734-739
    • /
    • 2003
  • When a train moves on rails, wheel and rail vibrate to produce contact noise and contact force. The former results in airborne noise and the latter transmits through bogie and excites carbody to generate structure borne noise. In this paper, wheel vibration is studied by theoretical and experimental approaches. Theoretical analysis is performed by finite element method and experimental analysis is performed by impact test. Using modal analysis and model tunning, we could have good agreement between the two approaches.

  • PDF

임계위치에서의 고속철도용 윤축의 파괴인성 (Fracture Toughness of Wheelset for High Speed Train on the Critical Locations)

  • 권석진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.865-871
    • /
    • 2004
  • The safety evaluations of railway wheel sets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheel set materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheel set for high-speed trains, because the load state for each location of the wheel set while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

  • PDF

궤도 설계 동하중 산정을 위한 차량/궤도 상호작용 해석기법 개발 (Development of a Numerical Analysis Method of Train/Track Interaction for Evaluation of Dynamic Track Design Load)

  • 양신추
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.1094-1099
    • /
    • 2002
  • In this paper, a numerical method for vehicle-track interaction analysis is developed to evaluate vertical dynamic force subjected to rail surface. A vehicle is modelled by lumped masses system and track by multi layered continuous beam system. The equation of motion of vehicle and track interaction system is derived by considering compatibility condition at the contact points between wheel and rail. The input vibration source is given by the empirical formula of power spectral density of track irregularity, which is suggested by FRA. Using this method, dynamic impact factors with the train speed are evaluated.

  • PDF

복심곡선 레일이상마모 발생 저감 사례 (The Reduction Case of Occurrence of Abnormal Wearing of Rail in Compound Curve Part)

  • 김완술
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1097-1106
    • /
    • 2007
  • Rail provides running tract for train and broadly and widely conveys the weight of the train exerted from the train wheels that the rail directly supports onto the cross tie and roadbed, and supports the cross-sectional pressure exerted by centrifugal force at curvatures. That is, stationary rail provides surface on which dynamic train runs and guarantees cross-sectional resistance to enable the vertical snake motion of the train wheels as well as to maintain lateral force at curvatures. Rail provides running surface on which train wheels can run smoothly, and secures vertical and lateral force. However, it undergoes continuous destructive reactions (wearing and damages) and abrasion of the cladding by the train wheels. It is obvious that wearing will result when two metal parts act against each other. However, occurrence of abnormal wearing such as rapid wearing of the rail side due to complex generation of various mechanisms at the contact surface between the rail and train wheel flange. It is not easy to simply examine the causes of occurrence of abnormal wearing of rail and train wheel flange. Although countless number of academicians and specialists are conducting researches on abnormal wearing of rail and vertical wearing of train wheels, I believe it is too early to argue on pros and cons due to insufficiency of officially verified information on the issue. This review will be focusing on the examples of repairs that reduced the generation of abnormal wearing of rail by reviewing and improving characteristics of wearing and slack, speed of the train and cant as well as status of lubricator by choosing the compound curves present in the section between the $Anguk{\sim}Jongno3-ga$ Stations of the Route No. 3 among the compound curve tracks of the Seoul Metro Routes No. 3 & 4 at which abnormal wearing is generated continuously.

  • PDF

평면형 차륜 형상을 가진 탈선계수 측정용 윤축의 하중시험 (Load test of wheel-set for derailment coefficient measurement that have plane style wheel plate)

  • 함영삼;홍재성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.228-233
    • /
    • 2004
  • A derailment coefficient of railway vehicle is as one of important element that estimate running safety. Derailment coefficient is ratio of lateral load/vertical load happens in contact point between wheel and rail. Lateral load increases, dangerous of derailment can rise. There are ground and vehicle to measurement method of these derailment coefficient. Method of ground is simple, but when vehicles passes data of a point, there is shortcoming that acquire locally. Curved surface style wheel shape that use so far among vehicle method in this research wishes to be not but describe about static load test of wheel-set for derailment coefficient measurement that have plane plate shape that manufacture separate way and correction result etc. to test.

  • PDF

철도차량 사행동에 미치는 인자에 관한 연구 (A Study on the Parameters for Hunting of the Rolling-stock)

  • 허현무;유원희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.98-103
    • /
    • 2006
  • The hunting is the natural characteristics of the railway wheelset which is originated from the contact between the conical type wheel profile and rail. The critical speed of rolling-stock is called when the hunting is occurred, and it is closely connected with vehicle stability. The parameters which influence the hunting motion are like wheel profile, primary spring property and wheelset dimension, etc. The studies for these parameters are reported diversely. In this study, we aim to analyze the influence of parameters on hunting with the change of wheel profile produced by wheel wear and material property produce by aging of primary spring. For this, we made a dynamic model for wheelset and vehicle. Using these models, we analyzed the critical speed with the variations of the parameters like as wheel profile and primary spring property and we show the results.

  • PDF

대차 주행시험대상에서의 윤축 거동에 대한 연구 (A Study on the Wheelset Behavior on the Roller Rig for Railway Bogie Testing)

  • 허현무;박준혁;유원희;박태원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1207-1212
    • /
    • 2007
  • The critical speed of railway bogie related to the stability of the railway rolling-stock is important. Testing of the dynamic performance of bogie is conducted using a roller rig in a laboratory in place of field testing on track. This roller rig is composed of two rollers equivalent to track and used to test the dynamic characteristics of vehicle. But, the geometrical characteristics of the wheel/roller contact on the roller rig are different from those of the wheel/rail contact because the longitudinal radius of roller is not infinite compared with rail. This difference has influence on the wheelset behavior and the critical speed of bogie. Therefore in this paper, we have studied the behavior of wheelset and bogie on the roller rig for railway bogie testing with the purpose of developing the scaled roller rig. As an analysis results, it has been shown that the critical speed of bogie on the roller rig is slightly lower than that of bogie on track.

  • PDF

등가답면구배를 목적함수로 하는 차륜답면형상 설계기법 (Design Method of Railway Wheel Profile with Objective Function of Eqivalent Conicity)

  • 허현무;유원희;박준혁;김민수
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.13-19
    • /
    • 2010
  • A design method of railway wheel profile with objective function of equivalent conicity considering wheel dimension constraint, two points contact problem between wheel and rail was proposed. New design method shows good results. New wheel profile generated from optimization process shows better dynamic performance compared with initial profile as the purpose of wheel profile design. And to verify the design method with testing the stability of new wheel profile, we conducted a critical speed test for new wheel profile using scale model applied scaling method of railway vehicle dynamics. The result of critical speed test show good agreement with that of numerical analysis. From the above results, it is seen that the design method with objective function of equivalent conicity is feasible and it could be applied to design new wheel profile efficiently.

Three-Dimensional Microstructural Modelling of Wear, Crack Initiation and Growth in Rail Steel

  • Fletcher, D.I.;Franklin, F.J.;Garnham, J.E.;Muyupa, E.;Papaelias, M.;Davis, C.L.;Kapoor, A.;Widiyarta, M.;Vasic, G.
    • International Journal of Railway
    • /
    • 제1권3호
    • /
    • pp.106-112
    • /
    • 2008
  • Rolling-sliding, cyclic contact of wheel and rail progressively alters the microstructure of the contacting steels, eventually leading to micro-scale crack initiation, wear and macro-scale crack growth in the railhead. Relating the microstructural changes to subsequent wear and cracking is being accomplished through modelling at three spatial scales: (i) bulk material (ii) multi-grain and (iii) sub-grain. The models incorporate detailed information from metallurgical examinations of used rails and tested rail material. The initial 2-dimensional models representing the rail material are being further developed into 3-dimensional models. Modelling is taking account of thermal effects, and traffic patterns to which the rails are exposed.

  • PDF

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.