• Title/Summary/Keyword: wetting process

검색결과 204건 처리시간 0.027초

전기화학 에칭 공정을 이용한 스테인리스 스틸 메쉬의 방수 특성 연구 (A Study on Water-Proof Characteristics of a Stainless Steel Mesh by Electrochemical Etching Process)

  • 이찬;김지민;김형모
    • Tribology and Lubricants
    • /
    • 제37권5호
    • /
    • pp.189-194
    • /
    • 2021
  • A straightforward, yet effective surface modification method of stainless steel mesh and its interesting anti-wetting characteristics are reported in this study. The stainless steel mesh is electrochemically etched, and the specimen has both micro and nano-scale structures on its surface. This process transforms the two types of mesh specimens known as the regular and dense specimens into hydrophobic specimens without applying any hydrophobic chemical coating process. The fundamental wettability of the modified mesh is analyzed through a dedicatedly designed experiment to investigate the waterproof characteristics, for instance, the penetration threshold. The waterproof characteristics are evaluated in a manner that the modified mesh resists as high as approximately 2.7 times the pressure compared with the bare mesh, i.e., the non-modified mesh. The results show that the penetration threshold depends primarily on the advancing contact angles, and the penetration stop behaviors are affected by the contact angle hysteresis on the surfaces. The findings further confirm that the inexpensive waterproof meshes created using the proposed straightforward electrochemical etching process are effective and can be adapted along with appropriate designs for various practical applications, such as underwater devices, passive valves, and transducers. In general, , additional chemical coatings are applied using hydrophobic materials on the surfaces for the applications that require water-repelling capabilities. Although these chemical coatings can often cause aging, the process proposed in this study is not only cost-effective, but also durable implying that it does not lose its waterproof properties over time.

RGP렌즈 제조 시 렌즈 물성과 렌즈 착용자 요인과의 관계 (The Relationship between Lens Properties and the Lens Wearer's Factors in RGP Lens Manufacturing)

  • 박미정;박하영;박정주;공희정;차영화;김소라
    • 한국안광학회지
    • /
    • 제18권1호
    • /
    • pp.27-35
    • /
    • 2013
  • 목적: 본 연구에서는 RGP렌즈의 제조과정 중 연마에 의하여 유발되는 렌즈의 물성 변화를 조사하고 이에 따른 실제 착용감과 착용자의 눈물막 파괴시간은 어떻게 달라지는지 알아보고자 하였다. 방법: RGP렌즈(fluorosilicone acrylate재질) 제조 시 연마시간을 각각 0초, 25초, 50초 및 100초로 달리하여 제조한 4개의 렌즈두께, 렌즈 표면 및 렌즈 접촉각을 비교하였다. 또한 이들 렌즈를 눈물량이 정상인 피검안에 착용시키고 피검자들이 느끼는 착용감을 설문조사하였으며, 피검자들의 비침습성 눈물막 파괴시간을 측정하였다. 결과: 연마시간을 달리한 4개의 RGP렌즈 두께는 유의한 차이는 없었으나 연마 후에는 렌즈 표면이 매끄러워짐을 주사전자현미경으로 확인하였다. RGP렌즈의 접촉각은 연마시간의 증가에 따라 유의하게 감소하여 연마시간이 0초인 렌즈와 100초인 렌즈 간의 접촉각 차이는 약 $16^{\circ}$ 정도이었으며 이는 통계적으로도 유의한 차이이었다. RGP렌즈의 실제 착용감은 렌즈의 습윤성이 증대할수록 좋아지는 경향을 보였으나 비례적으로 좋아지는 것은 아니었다. 연마조건에 따른 착용자의 눈물막 파괴시간변화는 습윤성이나 착용감의 변화와는 다른 양상을 보였다. 결론: 본 연구에서는 RGP렌즈 제조 시 물리적인 자극에 의한 습윤성의 증대나 렌즈두께의 얇아짐, 렌즈조도의 향상이 실제 착용 시 타각적 및 자각적 만족도의 증가와 일치하지 않는 것으로 나타났다. 따라서 RGP렌즈 제조 시 렌즈의 물성뿐만 아니라 착용자의 생리적인 요인 또한 고려되어야 할 것을 제안할 수 있다.

경화제의 분자량에 의한 가교밀도 차이에 따른 복합재료의 계면 물성 및 RTM 성형성에 미치는 영향 (The Effect of Interfacial Properties and RTM Process of Composites with Different Cross-linking Density by Molecular Weight of Hardener)

  • 박하승;신평수;김종현;백영민;권동준;박종만
    • Composites Research
    • /
    • 제30권3호
    • /
    • pp.169-174
    • /
    • 2017
  • 유리섬유(GF) 강화 복합재료는 금속에 비해 경량화의 장점으로 인해 기체 부품 산업의 높은 성장률과 방산 산업의 발전으로 수요는 증가되고 있으며 제품의 형태를 다양하게 제작할 수 있는 RTM 공정으로 산업적으로 이용되고 있다. 본 연구에서는 경화제의 분자량에 의한 가교 밀도 차이에 따라 변화되는 RTM의 성형성과 복합재료의 기계적 물성 및 계면 물성의 차이를 관찰하고자 하였다. 이를 위해 동일한 에폭시를 사용하였으며 유사한 화학 구조의 경화제를 이용하였다. 시편은 RTM 공법으로 제작하였으며 기지의 특성을 알아보기 위해 점도 측정 및 기지 주입시간을 측정하였다. 유리 섬유/에폭시 복합재료의 기계적 물성을 실험하여 굴곡 강도를 측정하였으며 계면 물성을 평가하기 위해 층간전단강도(ILSS)와 계면전단강도(IFSS)를 측정하였다. RTM 공정 시 기지의 점도에 의해 섬유의 함침정도에 따라 복합재료의 섬유 무게 분율(wt %)은 변화되고 이에 따라 유리섬유/에폭시 복합재료의 기계적 물성의 차이가 확인되었다.

Solderable 이방성 도전성 접착제를 이용한 BGA 접합공정 개발 (Development of BGA Interconnection Process Using Solderable Anisotropic Conductive Adhesives)

  • 임병승;이정일;오승훈;채종이;황민섭;김종민
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.10-15
    • /
    • 2016
  • In this paper, novel ball grid array (BGA) interconnection process using solderable anisotropic conductive adhesives (SACAs) with low-melting-point alloy (LMPA) fillers have been developed to enhance the processability in the conventional capillary underfill technique and to overcome the limitations in the no-flow underfill technique. To confirm the feasibility of the proposed technique, BGA interconnection test was performed using two types of SACA with different LMPA concentration (0 and 4 vol%). After the interconnection process, the interconnection characteristics such as morphology of conduction path and electrical properties of BGA assemblies were inspected and compared. The results indicated that BGA assemblies using SACA without LMPA fillers showed weak conduction path formation such as solder bump loss or short circuit formation because of the expansion of air bubbles within the interconnection area due to the relatively high reflow peak temperature. Meanwhile, assemblies using SACA with 4 vol% LMPAs showed stable metallurgical interconnection formation and electrical resistance due to the favorable selective wetting behavior of molten LMPAs for the solder bump and Cu metallization.

Application of Inkjet Technology in Flat Panel Display

  • Ryu, Beyong-Hwan;Choi, Young-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.913-918
    • /
    • 2005
  • It is expected that the inkjet technology offers prospect for reliable and low cost manufacturing of FPD (Flat Panel Display). This inkjet technology also offers a more simplified manufacturing process for various part of the FPD than conventional process. For example, recently the novel manufacturing processes of color filter (C/F) in LCD, or RGB patterning in OLED by inkjet printing method have been developed. This elaborates will be considered as the precious point of manufacturing process for the mass production of enlarged-display panel with a low price. On this point of view, we would like to review the status of inkjet technology in FPD, with some results on forming micro line by inkjet patterning of suspension type silver nano ink as below. We have studied the inkjet patterning of synthesized aqueous silver nano-sol on interface-controlled ITO glass substrate. Furthermore, we designed the conductive ink for direct inkjet patterning on bare ITO glass substrate. The first, the highly concentrated polymeric dispersant-assisted silver nano sol was prepared. The high concentration of batch-synthesized silver nano sol was possible to 40 wt%. At the same time the particle size of silver nanoparticles was below $10{\sim}20nm$. The second, the synthesized silver nano sol was inkjet - patterned on ITO glass substrate. The connectivity and width of fine line depended largely on the wettability of silver nano sol on ITO glass substrate, which was controlled by surfactant. The relationship was understood by wetting angle. The line of silver electrode as fine as $50{\sim}100\;{\mu}m$ was successfully formed on ITO glass substrate. The last, the direct inkjet-patternable silver nano sol on bare ITO glass substrate was designed also.

  • PDF

다이 및 와이어 본딩 공정을 위한 Sn-Sb Backside Metal의 계면 구조 및 전단 강도 분석 (Enhancing Die and Wire Bonding Process Reliability: Microstructure Evolution and Shear Strength Analysis of Sn-Sb Backside Metal)

  • 최여진;백승문;이유나;안성진
    • 한국재료학회지
    • /
    • 제34권3호
    • /
    • pp.170-174
    • /
    • 2024
  • In this study, we report the microstructural evolution and shear strength of an Sn-Sb alloy, used for die attach process as a solder layer of backside metal (BSM). The Sb content in the binary system was less than 1 at%. A chip with the Sn-Sb BSM was attached to a Ag plated Cu lead frame. The microstructure evolution was investigated after die bonding at 330 ℃, die bonding and isothermal heat treatment at 330 ℃ for 5 min and wire bonding at 260 ℃, respectively. At the interface between the chip and lead frame, Ni3Sn4 and Ag3Sn intermetallic compounds (IMCs) layers and pure Sn regions were confirmed after die bonding. When the isothermal heat treatment is conducted, pure Sn regions disappear at the interface because the Sn is consumed to form Ni3Sn4 and Ag3Sn IMCs. After the wire bonding process, the interface is composed of Ni3Sn4, Ag3Sn and (Ag,Cu)3Sn IMCs. The Sn-Sb BSM had a high maximum shear strength of 78.2 MPa, which is higher than the required specification of 6.2 MPa. In addition, it showed good wetting flow.

불포화 사질토의 거동예측을 위한 구성식 개발 (Development of Constitutive Model for the Prediction of Behaviour of Unsaturated Granular Soil)

  • 송창섭;장병욱
    • 한국지반공학회지:지반
    • /
    • 제11권3호
    • /
    • pp.43-54
    • /
    • 1995
  • 실트질 모래를 재료로 삼축압축시험기를 개조하고, 삼축셀에 고압공기투과판을 부착하여 축변환기법에 의해 흡인력과 순평균응력을 조절하면서 등력압축시험과 전단시험을 행하여, 불포화 상태에 따른 토질정수의 변화를 규명하였으며, 함수상태의 변화에 따라 응력, 체적변화 등의 거동특성을 검토하였다. 실험의 결과에서 규명된 불포화토의 특성을 바탕으로, 불포화토의 응력성분을 고려하고, 수정 Cam -Clay 모델을 경계조건으로 하는 불포화토의 거동예측을 위한 구성식을 개발하고, 실트질 모래에 대한 실내실험의 자료로부터 구한 관측치와 예측치를 비교하여 이의 타당성을 검증하였다.

  • PDF

Computer based FEM stabilization of oxygen transport model for material and energy simulation in corroding reinforced concrete

  • Hussain, Raja Rizwan
    • Computers and Concrete
    • /
    • 제12권5호
    • /
    • pp.669-680
    • /
    • 2013
  • This paper unveils a new computer based stabilization methodology for automated modeling analysis and its experimental verification for corrosion in reinforced concrete structures under the effect of varying oxygen concentration. Various corrosion cells with different concrete compositions under four different environmental conditions (air dry, submerged, 95% R.H and alternate wetting-drying) have been investigated under controlled laboratory conditions. The results of these laboratory tests were utilized with an automated computer-aided simulation model. This model based on mass and energy stabilization through the porous media for the corrosion process was coupled with modified stabilization methodology. By this coupling, it was possible to predict, maintain and transfer the influence of oxygen concentration on the corrosion rate of the reinforcement in concrete under various defined conditions satisfactorily. The variation in oxygen concentration available for corrosion reaction has been taken into account simulating the actual field conditions such as by varying concrete cover depth, relative humidity, water-cement ratio etc. The modeling task has been incorporated by the use of a computer based durability model as a finite element computational approach for stabilizing the effect of oxygen on corrosion of reinforced concrete structures.

Study on the Soldering of Off-eutectic Pb-Sn Solders in Partial Melting State

  • Park, Jae-Yong;Ha, Jun-Seok;Kang, Choon-Sik;Shin, Kyu-Sik;Kim, Moon-Il;Jung, Jae-Pil
    • 마이크로전자및패키징학회지
    • /
    • 제7권2호
    • /
    • pp.63-68
    • /
    • 2000
  • This paper introduces the partial melting process for solder application and characterization of its possibility using off-eutectic Pb-Sn alloy. In order to show that the liquid phase in the semi-liquid state maintains the wettability as the single-phase liquid, the wetting balance test are conducted with varying temperatures and compositions. The results are then compared with the surface tension of liquid, both measured and calculated, to examine the correlation. The results from this investigation indicate that the partial melting can yield satisfactory solder joints as long as the liquid phase acquires sufficient chemical activity. At a condition where the partial melting is effective, a direct correlation between the wettability and the surface tension is found to exist. All alloys are found to show a reasonable wettability in semi-liquid state.

  • PDF

On the use of alternative water use efficiency parameters in dryland ecosystems: a review

  • Kang, Wenping;Kang, Sinkyu
    • Journal of Ecology and Environment
    • /
    • 제43권2호
    • /
    • pp.246-253
    • /
    • 2019
  • Background: Water use efficiency (WUE) is an indicator of the trade-off between carbon uptake and water loss to the atmosphere at the plant or ecosystem level. Understanding temporal dynamics and the response of WUE to climatic variability is an essential part of land degradation assessments in water-limited dryland regions. Alternative definitions of and/or alternative methodologies used to measure WUE, however, have hampered intercomparisons among previous studies of different biomes and regions. The present study aims to clarify semantic differences among WUE parameters applied in previous studies and summarize these parameters in terms of their definition and methodology. Additionally, the consistency of the responses of alternative WUE parameters to interannual changes in moisture levels in Northeast Asia dryland regions (NADRs) was tested. Results: The literature review identified more than five different WUE parameters defined at leaf and ecosystem levels and indicates that major conclusions regarding the WUE response to climatic variability were partly inconsistent depending on the parameters used. Our demonstration of WUE in NADR again confirmed regional inconsistencies and further showed that inconsistencies were more distinct in hyper- and semi-arid climates than in arid climates, which might reflect the different relative roles of physical and biological processes in the coupled carbon-water process. Conclusions: The responses of alternative WUE parameters to drying and wetting may be different in different regions, and regionally different response seems to be related to aridity, which determines vegetation coverage.