• Title/Summary/Keyword: wet-milling

Search Result 145, Processing Time 0.028 seconds

Characteristics of Jochung by Wet-Milled Rice Flour and Steamed Rice (습식 미분과 증미로 제조한 쌀조청의 특성)

  • Lee, Jung-Eun;Choi, Yoon-Hee;Cho, Mun-Gyeong;Park, Shin-Young;Kim, Eun-Mi
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.637-643
    • /
    • 2012
  • This study was performed to increase the utilization of rice and improve the productivity of jochung, traditional food in Korea. Two kinds of jochung products were prepared from steamed rice(SR) and wet-milled rice flour(WRF) by rice cultivated from 2006 to 2010. It is common to add a liquefying enzyme for rice liquefaction(4 $m{\ell}$/1,000 g rice, at $90{\sim}95^{\circ}C$, 3 h) and saccharogenic enzyme with malt(45 g/1,000 g rice, at $55{\sim}57^{\circ}C$, 6 h). In order to evaluate the quality characteristics of jochung, producing rate, pH, solidity, reducing sugar, dextrose equivalence(D.E.), viscosity, total phenolic compound, color value and sensory evaluation were carried out. In terms of the producing rate of jochung, WRF jochung was produced about 7.4% much more than SR jochung. There was no difference in producing rate between the jochung cultivated from 2006 to 2010 rice. The pH varied from 4.86~5.66, solidity was 79.48~82.28%. Color L value was 25.82~27.92, a value of 1.28~2.81, b value were 2.98~4.33. The results of sensory evaluation for jochung, as a whole, received higher score than for the commercial product(Daesang Co., Ltd, Seoul, Korea), overall acceptability score was the highest in the 2008SR. Reducing sugar, dextrose equivalence(D.E.) and total phenolic compounds were determined to be higher WRF jochung than SR jochung, while viscosity was lower WRF jochung than SR jochung. These results are thought to be due to increased surface area of rice by milling. SR jochung manufacturd by wet-milled rice flour will increase the producing rate for jochung, thereby saving manufacturing time and costs.

Effects of Nano-sized Calcium Carbonate on Physical and Optical Properties of Paper (나노사이즈 탄산칼슘이 종이의 물리·광학적 특성에 미치는 영향)

  • Park, Jung-Yoon;Lee, Tai-Ju;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.4
    • /
    • pp.1-10
    • /
    • 2014
  • In papermaking industry, inorganic fillers are widely used for the purpose of improving opacity, brightness, printability, uniformity and dimensional stability. They are also useful for production costs and energy savings. In the past, inorganic fillers in papermaking industry only focused on micro-scale but recently, new trials on nano-powdered technology are applying. Even nano-powdered fillers are rapidly utilized for improving the optical and surface properties in coating and surface sizing, there still have some problems in wet-end process due to poor dispersibility and retention. In this study, nano-particled calcium carbonate was produced by milling the PCC and its applicability between micro sized and nano sized calcium carbonated was compared in wet-end process, and finally the sheet properties were evaluated. Nano-PCC was not retained in sheet structure without applying retention system, but with retention system nano-powdered PCC was absorbed on fiber surface with expanding the fiber networks. The application of PAM-bentonite system has resulted in high ash retention and bulky structure for copier paper, and good optical properties in brightness and opacity. However, it required to solve the weakness of low tensile property due to interruption of hydrogen bonding by nano fillers.

Nano Dispersion of Aggregated Y2O3:Eu Red Phosphor and Photoluminescent Properties of Its Nanosol (응집된 Y2O3:Eu Red 형광체의 나노분산 및 나노졸의 형광특성)

  • Lee, Hyun Jin;Ban, Se Min;Jung, Kyeong-Youl;Choi, Byung-Ki;Kang, Kwang-Jung;Kim, Dae Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.100-106
    • /
    • 2017
  • Nanosized and aggregated $Y_2O_3:Eu$ Red phosphors were prepared by template method from metal salt impregnated into crystalline cellulose. The particle size and photoluminescent property of $Y_2O_3:Eu$ red phosphors were controlled by variation of the calcination temperature and time. Dispersed nanosol was also obtained from the aggregated $Y_2O_3:Eu$ Red phosphor under bead mill wet process. The dispersion property of the $Y_2O_3:Eu$ nanosol was optimized by controlling the bead size, bead content ratio and milling time. The median particle size ($D_{50}$) of $Y_2O_3:Eu$ nanosol was found to be around 100 nm, and to be below 90 nm after centrifuging. In spite of the low photoluminescent properties of $Y_2O_3:Eu$ nanosol, it was observed that the photoluminescent property recovered after re-calcination. The dispersion and photoluminescent properties of $Y_2O_3:Eu$ nanosol were investigated using a particle size analyzer, FE-SEM, and a fluorescence spectrometer.

Delignification Effect on Properties of Lignocellulose Nanofibers from Korean White Pine and Their Nanopapers (잣나무 유래 리그노셀룰로오스 나노섬유 및 나노종이 특성에 미치는 탈리그닌의 영향)

  • Jang, Jae-Hyuk;Lee, Seung-Hwan;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • This study was carried out to investigate the effect of delignification on properties of lignocellulose nanofibers (LCNFs) prepared by wet disk-milling (WDM) after steam and ozone oxidation pre-treatments and their nanopaper sheets. Delignification treatment was effective to obtain fine morphology with uniform fiber diameter less than 35 nm without aggregation, and increased the specific surface area (SSA) and filtration time of LCNFs. In particular, SSA and filtration time of the LCNFs prepared by WDM after ozone pretreatment increased 1.5 and 5.4 times after further delignification. Delignification also increased whiteness and decreased the redness of nanopaper sheets. The highest color difference (41.9) before and after the delignification was obtained in LCNFs prepared by WDM after the steam pretreatment. Tensile properties of nanopaper sheets were also increased by further delignification. The highest tensile strength was found to be 142 MPa.

Development of Porous Support with Mine Waste Materials (광산 폐기물을 활용한 다공성 담체 개발)

  • 정문영;정명채;최연왕
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.143-151
    • /
    • 2004
  • This study focused on examining the possibility of recycling mine solid waste as environmental materials, especially for porous media. Basic properties including mineralogical compositions, chemical compositions, and particle size distribution of the tailings from the Sangdong W mine were checked. The mineralogical and chemical compositions of the tailings samples were not much different in depth. According to Korean Standard Leaching Test for Wastes(KSLT), concentrations of heavy metals leached from the tailings were below the standard values. As a result of particle size analysis, the median diameter (d$_{50}$) of the tailings was in the range of 10 to 30 ${\mu}{\textrm}{m}$. The stable tailings slurry made up of 3 ${\mu}{\textrm}{m}$ in d$_{50}$ was prepared using Attrition Mill. The milling condition was 40 vol% in slurry concentration, 700 rpm in stirring speed, and 1 hour in milling time. PEI was added as dispersing agent. Concentrated slurry was extended to 3 times by foaming method. In the case of 3 times foamed slurry, the total and open porosity of ceramic supports sintered at 1,075$^{\circ}C$ for 90 minutes was about 80% and 72%, respectively. Pore size was in the range of 30∼350${\mu}{\textrm}{m}$. Therefore, the tailings could be recycled starting material for environmental materials such as macroporous ceramic support.

Studies on Yukwa Processing Conditions and Popping Characteristics (유과 제조조건 및 팽화요인에 관한 연구)

  • Shin, Dong-Hwa;Choi, Ung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.6
    • /
    • pp.617-624
    • /
    • 1990
  • Proper processing condition of Yukwa(oil popped rice snack) for mass production and pop-ping mechanism of it were tested with Shinsun (waxy, Japonica type rice) which was excellent for Yukwa making. Optimum steaming time of dough was 15 min among 4 to 60 min and reasonable moisture content of the dough before steaming was 4895 among 48 to 53% which had good and fine texture. Acceptable stirring time of steamed dough was not significantly different among 1 to 4 min, but no stirring with much larger volume was shown very poor and too soft in texture. At the simplification test of milling method, wet milling was better then dry milling in expansion rate and high temperature treatment of dough at 6$0^{\circ}C$ gave negative effect on their quality. Extending high temperature treatment of dough, reducing sugars in the dough increased and it might be caused of starch degradation. In addition of some other protein sources to dough, Yukwa quality were in proportion to the protein content of the beans. At the long term storage of the Yukwa base, moisture absorption was different depending upon RH of atmosphere and the quality of Yukwa was inferior by storage time. By addition of some alcoholic beverage, such as Makkoli, Soju and Chungju, expansion rate and their texture were somewhat improved by increasing addition amount of them from 15% to. 30% on dough (w/w).

  • PDF

Post Harvest Technology for High Quality Rice (고품질 쌀 생산을 위한 수확 후 관리기술)

  • 김동철
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2002.08a
    • /
    • pp.54-63
    • /
    • 2002
  • Post-harvest technology for rice was focused on in-bin drying system, which consists of about 100, 000 facilities in 1980s. The modernized Rice Processing Complex (RPC) and Drying Storage Center (DSC) became popular for rice dry, storage, process and distribution from 1990s. However, the percentage of artificial drying for rice is 48% (2001) and the ability of bulk storage is about 15%. Therefore it is necessary to build enough drying and bulk storage facilities. The definition of high quality rice is to satisfy both good appearance and good taste. The index for good taste in rice is a below 7% of protein, 17-20% of amylose, 15.5-16.5% of moisture contents and high concentration of Mg and K. To obtain a high quality rice, it is absolutely needed to integrate high technologies including breeding program, cropping methods, harvesting time, drying, storing and processing methodologies. Generally, consumers prefer to rice retaining below b value of 5 in colorimetry, and the whiteness, the hardness and the moisture contents of rice are in order of consumer preference in rice quality. By selection of rice cultivars according to acceptable quality, the periods between harvesting time and drying reduced up to about 20 days. Therefore it is necessary to develop a low temperature grain drying system in order to (1) increase the rate of artificial rice drying up to 85%, (2) keep the drying temperature of below 45C, (3) maintain high quality in rice and (4) save energy consumption. Bulk storage facilities with low temperature storage system (7-15C) for rice using grain cooler should be built to reduce labor for handling and transportation and to keep a quality of rice. In the cooled rice, there is no loss of grain quality due to respiration, insect and microorganism, which results in high quality rice containing 16% of moisture contents all year round. In addition, introducing a low temperature milling system reduced the percentage of broken rice to 2% and increased the percentage of head rice to 3% because of proper hardness of grain. It has been noted that the broken rice and cracking reduced significantly by using low pressure milling and wet milling. Our mission for improving rice market competitiveness goes to (1) produce environment friendly, functional rice cultivars, (2) establish a grade standard of rice quality, (3) breed a new cultivar for consumer oriented and (4) extend the period of storage and shelf life of rice during postharvest.

  • PDF

Effect of Spray-drying Condition and Surfactant Addition on Morphological Characteristics of Spray-dried Nanocellulose

  • Park, Chan-Woo;Han, Song-Yi;Namgung, Hyun-Woo;Seo, Pureun-Narae;Lee, Seung-Hwan
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • In this study, spray-drying yield and morphological characterization of spray-dried cellulose nanofibril (CNF) and TEMPO-oxidized nanocellulose (TONC) depending on spray-drying condition and surfactant addition was investigated. As spray-drying temperature increased, the yield of spray-dried CNF was increased. The highest spray-drying yields in both nanocelluloses were found at didecyl dimethyl ammonium chloride (DDAC) addition of 2.5 phr at all investigated temperatures. The spray-dried CNF was the sphere-like particle, but the spray-dried TONC showed both rod and sphere-like morphology. The average diameter of spray-dried CNF was decreased with increasing DDAC addition amount, resulting in the increase of specific surface area.

Synthesis of TiC/Co Composite Powder by the Carbothermal Reduction Process (환원/침탄공정에 의한 TiC/Co 복합분말 합성)

  • Lee, Gil-Geun;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.310-315
    • /
    • 2009
  • Ultra-fine TiC/Co composite powder was synthesized by the carbothermal reduction process without wet chemical processing. The starting powder was prepared by milling of titanium dioxide and cobalt oxalate powders followed by subsequent calcination to have a target composition of TiC-15 wt.%Co. The prepared oxide powder was mixed again with carbon black, and this mixture was then heat-treated under flowing argon atmosphere. The changes in the phase, mass and particle size of the mixture during heat treatment were investigated using XRD, TG-DTA and SEM. The synthesized oxide powder after heat treatment at 700$^{\circ}C$ has a mixed phase of TiO$_2$ and CoTiO$_3$ phases. This composite oxide powder was carbothermally reduced to TiC/Co composite powder by the solid carbon. The synthesized TiC/Co composite powder at 1300$^{\circ}C$ for 9 hours has particle size of under about 0.4 $\mu$m.

Growth Mechanism of Nickel Nanodispersoids during Consolidation of $Al_2O_3/Ni$ Nanocomposite Powder ($Al_2O_3/Ni$ 나노복합분말의 치밀화중 분산상 Ni의 성장기구)

  • ;;;;T. Sekino;K. Niihara
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.237-243
    • /
    • 2000
  • The property and performance of the $Al_2O_3/Ni$ nanocomposites have been known to strongly depend on the structural feature of Ni nanodispersoids which affects considerably the structure of matrix. Such nanodispersoids undergo structural evolution in the process of consolidation. Thus, it is very important to understand the microstructural development of Ni nanodispersoids depending on the structure change of the matrix by consolidation. The present investigation has focused on the growth mechanism of Ni nanodispersoids in the initial stage of sintering. $Al_2O_3/Ni$ powder mixtures were prepared by wet ball milling and hydrogen reduction of $Al_2O_3$ and Ni oxide powders. Microstructural development and the growth mechanism of Ni dispersion during isothermal sintering were investigated depending on the porosity and structure of powder compacts. The growth mechanism of Ni was discussed based upon the reported kinetic mechanisms. It is found that the growth mechanism is closely related to the structural change of the compacts that affect material transport for coarsening. The result revealed that with decreasing porosity by consolidation the growth mechanism of Ni nanoparticles is changed from the migration-coalescence process to the interparticle transport mechanism.

  • PDF