• Title/Summary/Keyword: wet compaction test

Search Result 18, Processing Time 0.025 seconds

Application of WCT (Wet Compaction Test) to Mixed Fiber Furnishes (Wet compaction test를 이용한 혼합지료의 적용)

  • Seo Yung B.;Lee Chun Han
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.4 s.112
    • /
    • pp.8-17
    • /
    • 2005
  • WCT (Wet compaction test) is a new fiber evaluation method developed recently by Seo and its test results can be used as a predictor for pulp quality and its paper property Bleached chemical pulps (SwBKP, HwBKP), recycled pulp (OCC), and mechanical pulp (BCTMP) were used for the furnishes to be tested by WCT We compared the WCT results to conventional fiber evaluation tests such as WRV (Water Retention Value), free ness, and fiber length in this study, and found that WCT always gave better regression coefficients in relation to pulp quality (drainage), and paper properties (density, tensile, tear, and burst strength). WCT may be used on-line in papermachine.

The Study on the Compaction Characteristics of Underground Structural Backfill with Reclaimed Soil (준설토를 이용한 지하구조물 뒷채움 다짐특성에 관한 연구)

  • 김영웅;박기순;손형호;김종국
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.357-364
    • /
    • 1999
  • The purpose of this study is to analysis the grain distribution and compaction characteristics of structural backfill with reclaimed soil. Five(5) reclaimed soil samples which passed #200 sieve have been used in the test. The study showed that the maximum dry density and the bearing value rate turned out to be becoming smaller when the more the quantity passed #200 sieve, the smaller the soil grain. The maximum dry density value calculated from the compaction md relative density test showed wet method > compaction method > dry method. The correlation coefficient between Rc and Dr based on the grain distribution and the compaction characteristics showed that the maximum dry density value by the wet method is little higher than the compaction method and dry method.

  • PDF

Application of WCT(Wet Compaction Test) for Fiber Evaluation

  • Seo, Yung-B.;Ha, In-Ho;Lee, Chun-Han
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.9-15
    • /
    • 2006
  • Wet compaction test (WCT) is a fiber evaluation method where wet fibers are compressed at one side of a cylinder and water drains out from the other side. The consistency of the fiber furnishes and their pressures are recorded during the test. In the previous study we found that WCT results always gave better coefficients of determination in fiber furnish drainage, and paper properties (density, tensile, tear, and burst strength) than those of WRV (water retention value). Fiber freeness and fiber length correlated well with drainage and tear strength of the furnishes, respectively; however, their correlations were very much improved by combining the WCT results. In this study, we used the WCT test for fractionated fiber furnishes to see whether improvement of the WCT is possible. We found that strength properties such as breaking length and burst index were correlated better with the fractionated long fiber furnishes. Drainage was greatly affected by the presence of short fiber furnishes. We used bleached chemical pulps (SwBKP, HwBKP), recycled pulp (OCC), and mechanical pulp (BCTMP) as fiber furnishes in this study. Fiber fractionation can be performed on-line in these days by using multifractor and WCT can be used as an on-line test in papermachine in the future.

The study on the Crushability of Weathered Cranite Soils (화강암질 풍화토의 파쇄성에 관한 연구)

  • 도덕현;강우묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.2
    • /
    • pp.81-103
    • /
    • 1979
  • The weathered granite soil involves problems in its stability in soil structures depending upon the reduction of soil strength due to the water absorption, crushability, and content of colored mineral and feldspar. As an attemt to solve the problems associated with soil stability, the crushability of weathered granite soil was investigated by conducting tests such as compaction test, CBR test, unconfined compression test, direct shear test, triaxial compression test, and permeability test on the five soil samples different in weathering and mineral compositions. The experimental results are summarized as follows: The ratio of increasing dry density in the weathered granite soil was high as the compaction energy was low, while it was low as the compaction energy was increased. The unconfined compressive strength. and CBR value were highest in the dry side rather than in the soil with the optimum moisture content, when the soil was compacted by adjusting water content. However, the unconfined compressive strength of smples, which were compacted and oven dried, were highest in the wet side rather than in soil with the optimum moisture content. As the soil becomes coarse grain, the ratio of specific surface area increased due to increased crushability, and the increasing ratio of the specific surface area decreased as the compaction energy was increased. The highest ratio of grain crushability was attained in the wet side rather than in the soil with the optimum moisture content. Such tendency was transforming to the dry side as the compaction energy was increased. The effect of water on the grain crushability of soil was high in the coarse grained soil. The specific surface area of WK soil sample, when compacted under the condition of air dried and under the optimum moisture content, was constant regardless of the compaction energy. When the weathered granite soil and river sand with the same grain size were compacted with low compaction energy, the weathered granite soil with crushability had higher dry density than river sand. However, when the compaction energy reached to certain point over limitation, the river sand had higher dry density than the weathered granite soil. The coefficient of permeability was lowest in the wet side rather than in the optimum moisture content, when the soil was compacted by adjusting soil water content. The reduction of permeability of soil due to the compaction was more apparent in the weathered granite soil than in the river sand. The highly significant correlation coefficient was obtained between the amount of particle breakage and dry density of the compacted soil.

  • PDF

The Study on Portland Cement Stabilization on the Weathered Granite Soils (on the Durability) (화강암질 풍화토의 시멘트에 의한 안정처리에 관한 연구 (내구성을 중심으로))

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.60-74
    • /
    • 1980
  • Soil-cement mixtures involve problems in it's durability in grain size distribution and mineral composition of the used soils as well as in cement content, compaction energy, molding water content, and curing. As an attempt to solve the problems associated with durability of weathered granite soil with cement treated was investigated by conducting tests such as unconfined compression test, it's moisture, immers, wet-dry and freeze-thaw curing, mesurement of loss of weight with wet-dry and freeze-thaw by KS F criteria and CBR test with moisture curing on the five soil samples different in weathering and mineral composition. The experimental results are summarized as follows; The unconfined compressive strength was higher in moisture curing rather than in the immers and wet-dry, while it was lowest in freeze-thaw. Decreasing ratio of unconfined compressive strength in soil-cement mixtures were lowest in optimum moisture content or in the dry side rather than optimum moisture content with freeze-thaw. The highly significant ceofficient was obtained between the cement content and loss of weight with freeze-thaw and wet-dry. It was possible to obtain the durability of soil-cement mixtures, as the materials of base for roads, containing above 4 % of cement content, above 3Okg/cm$_2$ of unconfined compressive trength with seven days moisture curing or 12 cycle of freeze-thaw after it, above 100% of relative unconfined compressive strength, 80% of index of resistance, below 14% of loss of weight with 12 cycle of wet-dry and above 1. 80g/cm$_2$ of dry density.

  • PDF

An Experimental Investigation of the Variations of the Elastic Wave Velocities with Compaction Energy for Railway Roadbed Materials (다짐 에너지를 고려한 노반 성토 재료의 탄성파 속도 변화의 실험적 분석)

  • Kim, Hak-Sung;Jung, Young-Hoon;Mok, Young-Jin;Lee, Jin-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1037-1047
    • /
    • 2013
  • A systematic laboratory compaction testing was performed with the laboratory seismic measurements of the compacted specimens sampled from various compaction fills and was supplemented with in-situ seismic testing to investigate the effects of compaction energy on the elastic wave velocities of the railway roadbed materials. The both variances of the compressive and shear wave velocities with moisture content curve ($V_p$-w and $V_s$-w curves) are similar to the general trend of the density-moisture content curve(${\gamma}_d$-w curve). At the wet side of optimal moisture content (OMC), either $V_p$ or $V_s$ does not significantly increase, which is well reflecting the no gaining in density with the increasing compaction energy exceeding modified-D compaction effort. $V_p$ increases linearly with ${\gamma}_d$ at the dry side of OMC, while it does exponentially at the wet side. The in-situ wave velocities were found to be influenced by the level of confinement and $V_s$ was more sensitive to compaction energy than $V_p$.

Study on engineering properties of xanthan gum reinforced kaolinite

  • Zhanbo Cheng;Xueyu Geng
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.501-511
    • /
    • 2023
  • The strengthening efficiency of biopolymer treated soil depends on biopolymer type, concentration ratio, soil type, initial water content, curing time and mixing method. In this study, the physical and mechanical properties of xanthan gum (XG) treated kaolinite were investigated through compaction test, Atterberg limit test, triaxial test and unconfined compression test. The results indicated that the optimum water content (OWC) increased from 30.3% of untreated clay to 33.5% of 5% XG treated clay, while the maximum dry density has a slight increase from 13.96 kg/m3 to 14 kg/m3 of 0.2% XG treated clay and decrease to 2.7 kg/m3 of 5% XG treated clay. Meanwhile, the plastic limit of XG treated clay increased with the increase of XG concentration, while 0.5% XG treated clay can be observed the maximum liquid limit with 79.5%. Moreover, there are the ideal water content about 1.3-1.5 times of the optimum water content achieving the maximum dry density and curing time to obtain the maximum compressive strength for different XG contents, which the UCS is 1.52 and 2.07 times of the maximum UCS of untreated soil for 0.5% and 1% XG treated clay, respectively. In addition, hot-dry mixing can achieve highest UCS than other mixing methods (e.g., dry mixing, wet mixing and hot-wet mixing).

Effect of bound water on mechanical properties of typical subgrade soils in southern China

  • Ding, Le;Zhang, Junhui;Deng, Zonghuang
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.573-582
    • /
    • 2021
  • From the effect of bound water, this study aims to seek the potential reasons for difference of mechanical experiment results of subgrades soils. To attain the comparatively test condition of bound water, dry forming (DF) and wet forming (WF) were used in the specimen forming process before testing, series of laboratory tests, i.e., CBR tests, direct shear tests and compaction tests. The measured optimal moisture contents, maximum dry densities, CBR, cohesion c, and internal friction angle 𝜑 were given contrastive analysis. Then to detect the adsorptive bound water in the subgrade soils, the thermal gravimetric and differential scanning calorimetry (TG-DSC) test were employed under different heating rates. The free water, loosely bound water and tightly bound water in soils were qualitatively and quantitatively analyzed. It was found that due to the different dehydration mechanics, the lost bound water in DF and WF process show their own characteristics. This may lead to the different mechanical properties of tested soils. The clayey particles have a great influence on the bound water adsorbed ability of subgrade soils. The more the clay content, the greater the difference of mechanical properties tested between the two forming methods. Moreover, in highway construction of southern China, the wet forming method is recommended for its higher authenticity in simulating the subgrade filed humidity.

A Study on the Prediction of Maximum Dry Density and Optimum Moisture Content in Soil Compaction (흙의 다짐에 있어서 최대건조밀도(最大乾燥密度)와 최적함수비(最適含水比)의 추정(推定)에 대(對)하여)

  • Kang, Yea-Mook;Cho, Seung-Seup;Kim, Jae-Young
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.2
    • /
    • pp.207-213
    • /
    • 1976
  • In order to obtain the prediction of the maximum dry density and the optimum moisture content of soil without soil moisture test, compaction test results from 157 different places either under construction or already completed were analyzed. The analyzed results were as follow The relationship between the maximum dry density and the optimum moisture content of the soil showing a correlation coefficient of 0.96 indicated that there was a high correlation between them. From the above relationship we obtained the equation, ${\gamma}_{dmax.}={\frac{1}{0.4193+0.00937W_{opt.}}$ Equation between the optimum moisture content and the maximum wet density of the soil was $W_{opt.}={\frac{0.4193{\gamma}_{tmax.}}{0.937_{\gamma}_{tmax.}-0.01}$, and the values of the optimum moisture content being predicted with the maximum wet density of the soil showed a little difference between those and tested values. The values of the maximum dry density being predicted with the moisture content estimated by the maximum wet density of the soil were within the range of ${\pm}5%$ of its tested values. The relationship between the dry density and the void ratio showed a high correlation between them (${\gamma}=0.9706$). From the above relationship, we obtained the equation, ${\gamma}_{dmax.}={\frac{1}{0.3938+0.3426e}}$.

  • PDF

Characteristics of Shear Strength for Recycled Fine Aggregates Mixed Soil (순환잔골재 혼합토의 전단강도 특성)

  • Im, Weulsook;Kwon, Jeunghoon;Kim, Minwook;Kim, Youngmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.47-55
    • /
    • 2010
  • The recycled fine aggregates were mixed with weathered granite soils typically used for fill materials and tested engineering properties, physical properties, and compaction characteristics according to the mixing ratio of the mixed soils. The results of this study were as follows. For the results of A-type compaction test, the recycled fine aggregates showed low effects compared to the weathered soils, but the mixed soils which were mixed with the weathered granite soils and the recycled fine aggregates showed good compaction effects. Especially, the mixing ratio of 70:30 by weight showed for maximum compaction result. From the results of the direct shear test, the cohesion was ince csed according to proportion of the weathered granite soils. The weathered granite soils neared the optimum moisture content showed for maximum shear strength paramcoers, while the cohesion of the mixed soil was relatively ince csed in the wet side of the optimum moisture content. This trend was seemed to remained cence composition in the recycled fine aggregates. The internal friction angle of the recycled fine aggregates and the mixed soils showed maximum value near dry side of the optimum moisture contents. And the internal friction angles of the mixed soils were increased according to higher proportion of the recycled fine aggregates.