DOI QR코드

DOI QR Code

An Experimental Investigation of the Variations of the Elastic Wave Velocities with Compaction Energy for Railway Roadbed Materials

다짐 에너지를 고려한 노반 성토 재료의 탄성파 속도 변화의 실험적 분석

  • 김학성 (롯데건설 기술연구원) ;
  • 정영훈 (경희대학교 사회기반시스템공학과) ;
  • 목영진 (경희대학교 사회기반시스템공학과) ;
  • 이진욱 (한국철도기술연구원)
  • Received : 2012.12.01
  • Accepted : 2013.04.10
  • Published : 2013.05.30

Abstract

A systematic laboratory compaction testing was performed with the laboratory seismic measurements of the compacted specimens sampled from various compaction fills and was supplemented with in-situ seismic testing to investigate the effects of compaction energy on the elastic wave velocities of the railway roadbed materials. The both variances of the compressive and shear wave velocities with moisture content curve ($V_p$-w and $V_s$-w curves) are similar to the general trend of the density-moisture content curve(${\gamma}_d$-w curve). At the wet side of optimal moisture content (OMC), either $V_p$ or $V_s$ does not significantly increase, which is well reflecting the no gaining in density with the increasing compaction energy exceeding modified-D compaction effort. $V_p$ increases linearly with ${\gamma}_d$ at the dry side of OMC, while it does exponentially at the wet side. The in-situ wave velocities were found to be influenced by the level of confinement and $V_s$ was more sensitive to compaction energy than $V_p$.

다짐 에너지에 따른 노반 성토재의 탄성파 속도변화 특성을 규명하기 위하여 다양한 위치에서 채취한 시료를 이용하여 실내 다짐 시험, 실내 탄성파 측정 시험, 현장 탄성파 측정 시험을 실시하였다. 함수비 변화에 따른 압축파와 전단파 속도 변화 곡선은 다짐 곡선과 유사한 형태를 보인다. 다짐에너지가 100 %이상 되는 조건에서는 다짐 에너지가 증가하더라도 습윤 측의 다짐곡선과 탄성파 속도 곡선에 큰 변화가 없다. 압축파의 경우 건조 측에서 건조단위중량이 증가함에 따라 압축파 속도가 선형적으로 증가하는 양상이 나타나지만, 습윤 측에서는 건조단위중량이 증가함에 따라 지수함수의 형태로 압축파 속도가 비선형적으로 증가한다. 현장 시험으로 측정한 탄성파 속도는 구속압이 증가함에 따라 증가하며, 압축파 속도보다는 전단파 속도가 다짐 에너지 수준에 보다 민감하게 변화한다.

Keywords

References

  1. Abu-Farsakh, Y. M., Alshibli, K., Nazzal, D. M., and Seyman, E. (2004). "Assesment of in-situ test technology for construction control of base courses and embankments." Louisiana Transportation Research Center, Louisiana.
  2. ASTM D422-63 (2007). Standard test method for particle-size analysis of soils.
  3. Hardin, B. O. and Black, W. L. (1966). "Sand stiffness under various triaxial stresses." J. of Soil Mech. and Found. Eng. Div., ASCE, Vol. 94, No. SM2, pp. 353-369.
  4. Iowa DOT (2004). Project report : Field Evaluation of Compaction Monitoring Technology: Phase I, TR-495, Iowa DOT Project, Iowa.
  5. Johnson, A. W., and Sallberg, J. R. (1960). Factors that influence field compaction of soils, Bulletin of Highway Research Board 272, National Academy of Science.
  6. Jung, Y.-H., Kim, H.-S., Byeon, B.-H., and Lee, J.-W. (2011). "Deformation measurement of roadbed in full-scale field test to determine an optimum trackbed of high-speed railway." Proc. of 2011 Fall Conf. & Ann. Meeting of the Korean Soc. for Railway, Korean society for railway, Vol. 1, No. 10, pp. 2821-2829 (in Korean).
  7. KICTEP (2008). A study of design standard and technology to estimate optimum thickness of earth roadbeds, Construction & Transportation R&D Report, Korea (in Korean).
  8. KS F 2312 (2001). Compaction test of soils (in Korean).
  9. Park, C. S., Mok, Y. J., Choi, C. Y., and Lee, T. H. (2009a). "A methodology for quality control of railroad trackbed fills using compressional wave velocities: 1. Preliminary investigation." J. of the Korean Geotech. Soc., Vol. 25, No. 9, pp. 45-55 (in Korean).
  10. Park, C. S., Mok, Y. J., Hwang, S. K., and Park, I. B. (2009b). "A methodology for quality control of railroad trackbed fills using compressional wave velocities: 2. Verification of applicability." J. of the Korean Geotech. Soc., Vol. 25, No. 9, pp. 57-66 (in Korean).
  11. Richart, F. E., Hall, J. R., and Wood, R. D. (1970). Vibration of soils and foundations, Prentice-Hall Inc., New Jersey.
  12. Shirley, D. J. (1978). "An improved shear wave transducer." J. of Acous. Soc. Am., Vol. 63, No. 5, pp. 1643-1645. https://doi.org/10.1121/1.381866
  13. Slavova, D. Z., Weidinger, D. M., Sevi, A. F., and Ge, L. (2010). "Evaluation of compacted silt characteristics by ultrasonic pulse velocity testing." Proc. of GeoFlorida 2010, ASCE GSP 199, pp. 1284-1293.
  14. Taljaard, S. (2006). Determining pavement stiffness using continuos measurement of surface waves, Project Report, Univ. of Pretoria, South Africa.
  15. Terzaghi, K., Peck, R. B., and Mesri, G. (1996). Soil mechanics in engineering practice 3rd edition, John Wiley and Sons, Inc., New York.
  16. Weidinger, D. M., Ge, L., and Stephenson, R. W. (2009). "Ultrasonic pulse velocity tests on compacted soil." Proc. of GeoHunan 2009, ASCE GSP 189, pp. 150-155.
  17. Yesiller, N., Inci, G., and Miller, C. J. (2011). "Ultrasonic testing for compacted clayey soils." ASCE GSP 99, pp. 54-68.