• Title/Summary/Keyword: western blot semi-quantitative analysis

Search Result 15, Processing Time 0.031 seconds

Patterns of Aquaporin 7 Expression in Normal Follicles and Follicular Cyst Follicles of Hanwoo (한우의 정상 난포와 난포낭종 난포에서 Aquaporin7 발현 양상)

  • Kim, Chang-Woon;Han, Sunkyu;Choe, Changyong
    • Journal of Embryo Transfer
    • /
    • v.30 no.1
    • /
    • pp.17-21
    • /
    • 2015
  • Alteration in ion channel or transporter expression levels affects cell volume which is produced by movement of water and ion across the plasma membrane. In particular, aquaporin (AQP) channels among ion channels play a crucial role in movement of water across the cell membrane. This study was performed to identify whether AQP expression is changed in bovine follicular cystic follicles using microarray, RT-PCR and Western blotting analyses. In microarray data, AQP4 expression was decreased, whereas AQP7 was increased in cystic follicles. Additional experiments were focused on the AQP7 expression increased in cystic follicles. The microarray data was confirmed by semi-quantitative polymerase chain reaction (PCR) and Western blot analysis. AQP7 mRNA and protein expressions were significantly increased in the cystic follicles (p<0.05). Application of estrogen ($10{\mu}g/ml$) to bovine ovarian cells showed a trend of increase in AQP7 expression. From these results, we suggest that the increase in AQP7 expression in cystic follicles may play an important role in movement of water in bovine ovary. In addition, AQP7, a aquaglyceroporin permeating water and glycerol, could be a good target in development of methods for the cryopreservation of bovine ovary.

Activation of Macrophages by the Components Produced from Cordyceps militaris

  • Kim, Hyun-Yul;Kim, Kwang-Hee;Han, Shin-Ha;Lee, Seong-Jung;Kwon, Jeung-Hak;Lee, Sung-Won;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.7 no.2
    • /
    • pp.57-65
    • /
    • 2007
  • Background: Cordyceps militaris have been reported to modify the immune and inflammatory responses both in vivo and in vitro. Macrophages play important roles in the innate immunity through the phagocytosis of antigens. This study examined the effects of Cordyceps militaris on the activation of murine macrophage RAW 264.7 cells and primary macrophages. Methods: The components contained in culture broth of Cordyceps militaris were purified by propyl alcohol extraction and HP 20 column chromatography to CMDB, CMDBW, CMDB5P, and CMDB25P. The amounts of nitric oxide (NO) were determined by using ELISA, Griess reagent respectively. The amounts of some cytokines were determined by using ELISA, western blot, and RT-PCR The expression levels of cell surface molecules (ICAM-1, B7-1 and B7-2) were measured by flow cytometric analysis. Results: All the components of Cordyceps militaris produced significant amounts of NO. In particular, CMDB produced much more NO in RAW 264.7 cells and primary macrophages than other fractions of Cordyceps militaris. CMDB increased significantly the production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-1${\beta}$, and IL-6 dose-dependently in RAW 264.7 cells. Examination of the gene expression level also showed that the enhanced production of cytokines was correlated with the up-regulation of i-NOS expression, cycloxygenase (COX)-2 expression, IL-1${\beta}$ and IL-6 expression, and TNF-${\alpha}$ expression on the expression of mRNAs by semi-quantitative RT-PCR Western blot analysis also confirmed that CMDB enhances the expression level of these cytokines. Conclusion: These results show that CMDB stimulates the production of NO and pro-inflammatory cytokines and can also up-regulate the gene expression levels in macrophages.

Upregulation of Glutathion S-Transferase mu 1 in Bovine Cystic Follicles

  • Kang, Da-Won;Kim, Chang-Woon;Han, Jae-Hee
    • Journal of Embryo Transfer
    • /
    • v.25 no.4
    • /
    • pp.273-279
    • /
    • 2010
  • Follicular cystic follicles (FCFs) show delayed regression with persistent follicle growth. However, the mechanism by which follicles are persistently grown remains unclear. Glutathione S-transferases (GSTs) are drug-metabolizing and detoxification enzymes that are involved in the intracellular transport and metabolism of steroid hormones. In this study, a proteomic analysis was performed to identify whether GST expression is changed in bovine FCFs and to predict the interactions between GST and other proteins. Normal follicles and FCFs were classified based on their sizes (5 to 10 mm and 25 mm). In bovine follicles, GST mu 1 (GSTM1) was detected as a differentially expressed protein (DEP) and significantly up-regulated in FCFs compared to normal follicles (p<0.05). Consistent with the proteomic results, semi-quantitative PCR data and western blot analysis revealed an up-regulation of GSTM1 in FCFs. Expression levels of aromatase and dehydrogenase proteins were changed in FCFs. These results show that the up-regulation of GSTM1 that is observed in bovine FCFs is likely to be responsible for the persistent follicle growth in FCFs as the activity of aromatase and the dehydrogenases.

Expression of the Proto-oncogene Pokemon in Colorectal Cancer - Inhibitory Effects of an siRNA

  • Zhao, Gan-Ting;Yang, Li-Juan;Li, Xi-Xia;Cui, Hui-Lin;Guo, Rui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.4999-5005
    • /
    • 2013
  • Objective: This study aimed to investigate expression of the proto-oncogene POK erythroid myeloid ontogenic factor (Pokemon) in colorectal cancer (CRC), and assess inhibitory effects of a small interference RNA (siRNA) expression vector in SW480 and SW620 cells. Methods: Semi-quantitative reverse transcription-polymerase chain reaction (PCR) and immunohistochemistry were performed to determine mRNA and protein expression levels of Pokemon in CRC tissues. Indirect immunofluorescence staining was applied to investigate the location of Pokemon in SW480 and SW620 cells. The siRNA expression vectors that were constructed to express a short hairpin RNA against Pokemon were transfected to the SW480 and SW620 cells with a liposome. Expression levels of Pokemon mRNA and protein were examined by real-time quantitative-fluorescent PCR and western blot analysis. The effects of Pokemon silencing on proliferation of SW480 and SW620 cells were evaluated with reference to growth curves with MTT assays. Results: The mRNA expression level of Pokemon in tumor tissues ($0.845{\pm}0.344$) was significantly higher than that in adjacent tumor specimens ($0.321{\pm}0.197$). The positive expression ratio of Pokemon protein in CRC (87.0%) was significantly higher than that in the adjacent tissues (19.6%). Strong fluorescence staining of Pokemon protein was observed in the cytoplasm of the SW480 and SW620 cells. The inhibition ratios of Pokemon mRNA and protein in the SW480 cells were 83.1% and 73.5% at 48 and 72 h, respectively, compared with those of the negative control cells with the siRNA. In the SW620 cells, the inhibition ratios of Pokemon mRNA and protein were 76.3% and 68.7% at 48 and 72 h, respectively. MTT showed that Pokemon gene silencing inhibited the proliferation of SW480 and SW620 cells. Conclusion: Overexpression of Pokemon in CRC may have a function in carcinogenesis and progression. siRNA expression vectors could effectively inhibit mRNA and protein expression of Pokemon in SW480 and SW620 cells, thereby reducing malignant cell proliferation.

Molecular characterization and functional analysis of a protease-related protein in Chang-liver cells

  • Wang, Congrui;Zhang, Huiyong;Feng, Huigen;Yang, Baosheng;Pramanik, Jogenananda;Guo, Zhikun;Lin, Juntang
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.375-381
    • /
    • 2010
  • In this study, the cDNA library of Chang-liver cells was immunoscreened using common ADAMs antibody to obtain ADAM related genes. We found one positive clone that was confirmed as a new gene by Blast, which is an uncharacterized helical and coil protein and processes protease activity, and named protease-related protein 1 (ARP1). The submitted GenBank accession number is AY078070. Molecular characterizations of ARP1 were analyzed with appropriate bioinformatics software. To analyse its expression and function, ARP1 was subcloned into glutathione S-transferase fusion plasmid pGEX-2T and expressed by E. coli system. The in vitro expression product of ARP1 was recognized by common ADAMs antibody with western blot. Interestingly, ARP1 cleaves gelatine at pH9.5, which suggests it is an alkaline protease. Semi-quantitative RT-PCR result indicates that ARP1 mRNA is strongly transcribed in the liver and the treated Chang-liver cells.

Development of Marker-free Transgenic Rice Expressing the Wheat Storage Protein, Glu-1Dy10, for Increasing Quality Processing of Bread and Noodles (빵과 면의 가공적성 증진을 위한 밀 저장단백질 Glu-1Dy10을 발현하는 마커프리 형질전환 벼 개발)

  • Park, Soo-Kwon;Shin, DongJin;Hwang, Woon-Ha;Hur, Yeon-Jae;Kim, Tae-Heon;Oh, Se-Yun;Cho, Jun-Hyun;Han, Sang-Ik;Lee, Seung-Sik;Nam, Min-Hee;Park, Dong-Soo
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.618-625
    • /
    • 2014
  • Rice flour is used in many food products. However, dough made from rice lacks extensibility and elasticity, making it less suitable than wheat for many food products such as bread and noodles. The high-molecular weight glutenin subunits (HMW-GS) of wheat play a crucial role in determining the processing properties of the wheat grain. This paper describes the development of marker-free transgenic rice plants expressing a wheat Glu-Dy10 gene encoding the HMG-GS from the Korean wheat cultivar 'Jokyeong' using Agrobacterium-mediated co-transformation. Two expression cassettes, consisting of separate DNA fragments containing Glu-1Dy10 and hygromycin phosphotransferase II (HPTII) resistance genes, were introduced separately into Agrobacterium tumefaciens EHA105 for co-infection. Each EHA105 strain harboring Glu-1Dy10 or HPTII was infected into rice calli at a 3: 1 ratio of Glu-1Bx7 and HPTII. Among 290 hygromycin-resistant $T_0$ plants, we obtained 29 transgenic lines with both the Glu-1Dy10 and HPTII genes inserted into the rice genome. We reconfirmed the integration of the Glu-1Dy10 gene into the rice genome by Southern blot analysis. Transcripts and proteins of the Glu-1Dy10 in transgenic rice seeds were examined by semi-quantitative RT-PCR and Western blot analysis. The marker-free plants containing only the Glu-1Dy10 gene were successfully screened in the $T_1$ generation.

Aquaporin 4 expression is downregulated in large bovine ovarian follicles

  • Kim, Chang-Woon;Choi, Eun-Ju;Kim, Eun-Jin;Siregar, Adrian S.;Han, Jaehee;Kang, Dawon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.315-322
    • /
    • 2020
  • Aquaporin channels (AQPs) are known to play an important role in the development of ovarian follicles through their function in water transport pathways. Compared to other AQPs, research on the role of AQP4 in female reproductive physiology, particularly in cattle, remains limited. In our previous study, gene chip microarray data showed a downregulation of AQP4 in bovine cystic follicles. This study was performed to validate the AQP4 expression level at the protein level in bovine follicles using immunohistochemistry, Western blotting, and immunoprecipitation assays. Immunostaining data showed that AQP4 was expressed in granulosa and theca cells of bovine ovarian follicles. The ovarian follicles were classified according to size as small (< 10 mm) or large (> 25 mm) in diameter. Consistent with earlier microarray data, semi-quantitative PCR data showed a decrease in AQP4 mRNA expression in large follicles. Western blot analysis showed a downregulation of the AQP4 protein in large follicles. In addition, AQP4 was immunoprecipitated and blotted with anti-AQP4 antibody in small and large follicles. Accordingly, AQP4 exhibited a low expression in large follicles. These results show that AQP4 is downregulated in bovine ovarian large follicles, suggesting that the downregulation of AQP4 expression may interfere with follicular water transport, leading to bovine follicular cysts.

Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice

  • Kim, Jin Kyeong;Shin, Kon Kuk;Kim, Haeyeop;Hong, Yo Han;Choi, Wooram;Kwak, Yi-Seong;Han, Chang-Kyun;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.717-725
    • /
    • 2021
  • Background: Korean Red Ginseng (KRG) is a traditional herb that has several beneficial properties including anti-aging, anti-inflammatory, and autophagy regulatory effects. However, the mechanisms of these effects are not well understood. In this report, the underlying mechanisms of anti-inflammatory and autophagy-promoting effects were investigated in aged mice treated with KRG-water extract (WE) over a long period. Methods: The mechanisms of anti-inflammatory and autophagy-promoting activities of KRG-WE were evaluated in kidney, lung, liver, stomach, and colon of aged mice using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (qRT-PCR), and western blot analysis. Results: KRG-WE significantly suppressed the mRNA expression levels of inflammation-related genes such as interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)- α, monocyte chemoattractant protein-1 (MCP-1), and IL-6 in kidney, lung, liver, stomach, and colon of the aged mice. Furthermore, KRG-WE downregulated the expression of transcription factors and their protein levels associated with inflammation in lung and kidney of aged mice. KRG-WE also increased the expression of autophagy-related genes and their protein levels in colon, liver, and stomach. Conclusion: The results suggest that KRG can suppress inflammatory responses and recover autophagy activity in aged mice.

Prognostic Relevance of Human Telomerase Reverse Transcriptase (hTERT) Expression in Patients with Gall Bladder Disease and Carcinoma

  • Deblakshmi, Raj Kumari;Deka, Manab;Saikia, Anjan Kumar;Sharma, Bir Kumar;Singh, Nidhi;Das, NN;Bose, Sujoy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2923-2928
    • /
    • 2015
  • Background: Gallbladder carcinoma (GBC) has been stated as an Indian disease, with the highest number of cases being reported from certain districts of northeast India, which has an ethnically distinct population. Unfortunately there are no scientific reports on the underlying molecular mechanisms associated with the pathogenesis of the disease from this region. Aim: The present study evaluated the role of differential expression of human telomerase reverse transcriptase (hTERT) in the development of gall bladder anomalies. Materials and Methods: Blood and tissue samples were collected from patients undergoing routine surgical resection for clinically proven cases of gallbladder disease {cholelithiasis (CL, n=50), cholecystitis (CS, n=40) and GBC (n=30) along with adjacent histopathologically proved non-neoplastic controls (n=15)} with informed consent. Whole blood was also collected from age and sex matched healthy controls (n=25) for comparative analysis. Differential hTERT mRNA expression was evaluated by semi-quantitative rt-PCR and real-time PCR based analysis using ${\beta}$-actin as an internal control. Evaluation of differential hTERT protein expression was studied by Western blot analysis and immunoflourescence. Statistical analysis for differential expression and co-relation was performed by SPSSv13.0 software. Results: Gallbladder anomalies were mostly prevalent in females. The hTERT mRNA and protein expression increased gradiently from normal

Fibrinogen mRNA Expression Up-Regulated in Follicular Cyst of Korean Cattle (한우 난포낭종에서 증가되는 섬유소원 유전자 발현)

  • Tak, Hyun-Min;Han, Jae-Hee;Kang, Da-Won
    • Journal of Embryo Transfer
    • /
    • v.25 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • Follicular cystic ovary (FCO) is one of the major causes of reproductive failure in cattle. Genetic alterations affect the function of diverse cells and/or tissues, which could be present in cystic ovaries. A microarray analysis was performed to screen differential gene expressions in follicular cystic follicles of cattle. In this study, we hypothesized that follicular cysts may be induced by changes in ion- and transporter-related gene expression. Microarray data showed that fibrinogen-gamma (FGG) and low density lipoprotein receptor-related protein 8 (LRP8) were up-regulated, while choline transporter-like protein 4 (SLC44A4), very long-chain acyl-CoA synthetase homolog 2 (SLC27A5), annexin 8 (ANXA8), and aquaporin 4 were down-regulated in follicular cystic follicles. A semi-quantitative RT-PCR was carried out to validate DEGs altered in follicular cystic follicles. Of six DEGs, three DEGs (FGG, SLC44A4, and aquaporin 4) showed a positive correlation between microarray and semi-quantitative PCR data. We focused on FGG, among three DEGs, which was highly up-regulated in follicular cystic follicles. The FGG mRNA was upregulated by 8.4-fold and by 1.7-fold in the bovine follicular cystic follicles as judged by microarray and RT-PCR analysis, respectively. However, there was no significant changes in the expression level of FGG protein in both follicular cystic follicles and granulosa cells isolated from follicular cystic follicles by Western blot analysis. Although this study does not reveal a positive correlation between the mRNA and protein level, FGG appears to be an important biomarker in the discrimination of follicular cyst from normal ovary.