• 제목/요약/키워드: welded structures

검색결과 549건 처리시간 0.019초

Optimization of Lock-in Thermography Technique using Phase Image Processing (영상처리에 의한 위상잠금 열화상기법의 최적화 연구)

  • Cho, Yong-Jin;Han, Song-I
    • Journal of Ocean Engineering and Technology
    • /
    • 제26권5호
    • /
    • pp.25-30
    • /
    • 2012
  • This study examined the use of LIT (lock-in infrared thermography) to detect defects in the welded parts of ships and offshore structures. A quantitative analysis was used with the filtering and texture measurement of image processing techniques to find the optimized experimental condition. We verified the reliability of our methods by applying image processing techniques in order to normalize the evaluations of comparative images that showed a phase difference. In addition, it was found that a low to mid-range intensity of light exposure on the surface showed good results, whereas high exposure did not provide significant results. A lock-in frequency of around 0.1 Hz was satisfactory regardless of the intensity of the light source. In addition, making the integration time of the thermography camera inversely proportional to the intensity of the exposed light source during the experiment provided good results.

A study on the fatigue crack growth of mild steel weldments using flux cored wire $CO_2$ welding (국산 Flux-Cored Wire를 이용한 반자동용접이음새에서의 피로파괴 특성)

  • 엄동석
    • Journal of Welding and Joining
    • /
    • 제7권1호
    • /
    • pp.42-50
    • /
    • 1989
  • The application of fracture mechanics is being increased gradually to assess the safety of welded structures containing crack. Fatigue crack propagation behavior and elastic-plastic fracture toughness J$_{IC}$ of home made flux cored wire(1.22mm) CO$_{2}$ weldments was discussed. Especially fatigue crack propagation test was carried out by .DELTA.K control instead of load control and elastic-plastic fracture toughness J$_{IC}$ was obtained by ASTM-R curve method on C.T.specimen in transverse direction of weldments. The results obtained are as follows; (1) Weld metal presented an almost complete similarity to base metal on fatigue crack propagation rate in transverse direction. (2) Weld metal was more than base metal on J$_{IC}$ value in transverse direction. (3) F.C.W. CO$_{2}$ weldments had an excellent characteristic of fatigue crack propagation rate and J$_{IC}$ in less than 50kg/mm$^{2}$ steel grade, this would result from that weld metal had good static strength.trength.

  • PDF

Effect of Design Shape on Fatigue Life of Plug Welded Joint (플러그 용접이음부의 피로수명에 미치는 설계형상의 영향)

  • 임재규;이중삼;서도원
    • Journal of Welding and Joining
    • /
    • 제17권2호
    • /
    • pp.29-35
    • /
    • 1999
  • This study was intended to use for the fatigue test in real structures and offer basic data for optimum welding structure design. To this purpose, we obserded the effect of the size and distance of plug welding hole on the static strength and fatigue life of welding structure under the shear/bending load for the improvement of fatigue life of plug welding joint between S/MBR and C/MBR in the lower structure of large bus. The result below is shown through this study. 1) Static and fatigue strength are strongly influenced by the direction of plug weld hole distributed. 2) Distances and diameters of the distributed holes are little dependent on the static strengths 3) In case of the directions of the distributed plug weld holes are vertical to the loading pin, fatigue life is dependent on distance of the distributed hole. 4) In case of the directions of the distributed plug weld holes are parallel to the loading pin, fatigue life is dependent on distance of the hole diameter.

  • PDF

Correlation Between M-A Constituents and Tensile Properties in the Intercritical Coarse Grained HAZ of an Ultra Low Carbon Steel (극 저탄소강의 Intercritical coarse grained HAZ에서의 M-A상과 인장특성 간의 상관관계)

  • Lee, Yoon-Ki;Moon, Joon-Oh;Kim, Sang-Hoon;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • 제28권3호
    • /
    • pp.99-103
    • /
    • 2010
  • It is well known that martensite-austenite (M-A) constituents are formed in the intercritically reheated coarse grained heat affected zone (ICCGHAZ) of a multipass weld and they act on the local brittle zone (LBZ) in the welded structures. To investigate the effect of M-A constituents on the tensile properties of ICCGHAZ, specimens with M-A constituents of different volume fraction and size were prepared through the multipass welding cycles simulated by a Gleeble simulator and then tensile test was carried out. The results indicated that finely distributed M-A constituents contributed to decrease the yield ratio, which is mainly due to the increased tensile strength.

Experimental investigation of thin steel plate shear walls with different infill-to-boundary frame connections

  • Vatansever, Cuneyt;Yardimci, Nesrin
    • Steel and Composite Structures
    • /
    • 제11권3호
    • /
    • pp.251-271
    • /
    • 2011
  • To make direct comparisons regarding the cyclic behavior of thin steel plate shear walls (TSPSWs) with different infill-to-boundary frame connections, two TSPSWs were tested under quasi-static conditions, one having the infill plate attached to the boundary frame members on all edges and the other having the infill plate connected only to the beams. Also, the bare frame that was used in the TSPSW specimens was tested to provide data for the calibration of numerical models. The connection of infill plates to surrounding frames was achieved through the use of self-drilling screws to fish plates that were welded to the frame members. The behavior of TSPSW specimens are compared and discussed with emphasis on the characteristics important in seismic response, including the initial stiffness, ultimate strength and deformation modes observed during the tests. It is shown that TSPSW specimens achieve significant ductility and energy dissipation while the ultimate failure mode resulted from infill plate fracture at the net section of the infill plate-to-boundary frame connection after substantial infill plate yielding. Experimental results are compared to monotonic pushover predictions from computer analysis using strip models and the models are found to be capable of approximating the monotonic behavior of the TSPSW specimens.

Multi-criteria analysis of five reinforcement options for Peruvian confined masonry walls

  • Tarque, Nicola;Salsavilca, Jhoselyn;Yacila, Jhair;Camata, Guido
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.205-219
    • /
    • 2019
  • In Peru, construction of dwellings using confined masonry walls (CM) has a high percentage of acceptance within many sectors of the population. It is estimated that only in Lima, 80% of the constructions use CM and at least 70% of these are informal constructions. This mean that they are built without proper technical advice and generally have a high seismic vulnerability. One way to reduce this vulnerability is by reinforcing the walls. However, despite the existence of some reinforcement methods in the market, not all of them can be applied massively because there are other parameters to take into account, as economical, criteria for seismic improvement, reinforcement ratio, etc. Therefore, in this paper the feasibility of using five reinforcement techniques has been studied and compared. These reinforcements are: welded mesh (WM), glass fiber reinforced polymer (GFRP), carbon fiber reinforced polymer (CFRP), steel bar wire mesh (CSM), steel reinforced grout (SRG). The Multi-Criteria Decision Making (MCDM) method can be useful to evaluate the most optimal strengthening technique for a fast, effective and massive use plan in Peru. The results of using MCDM with 10 criteria indicate that the Carbon Fiber Reinforced Polymer (CFRP) and Steel Reinforced Grout (SRG) methods are the most suitable for a massive reinforcement application in Lima.

A study on behavior of steel joints that combine high-strength bolts and fillet welds

  • Chang, Heui-Yung;Yeh, Ching-Yu
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.361-372
    • /
    • 2019
  • In recent years, considerable attention has been paid to the research and development of high-strength steel plates, with particular emphasis on the enhancement of the seismic resistance of buildings and bridges. Many efforts have also been undertaken to improve the properties of high-strength bolts and weld materials. However, there are still different opinions on steel joints that combine high-strength bolts and fillet welds. Therefore, it is necessary to verify the design specifications and guidelines, especially for newly developed 1,400-MPa high-strength bolts, 570-MPa steel plates, and weld materials. This paper presents the results of literature reviews and experimental investigations. Test parameters include bolt strengths, weld orientations, and their combinations. The results show that advances in steel materials have increased the plastic deformation capacities of steel welds. That allows combination joints to gain their maximum strength before the welds have fracture failures. When in combination with longitudinal welds, high-strength bolts slip, come in contact with cover plates, and develop greater bearing strength before the joints reach their maximum strength. However, in the case of combinations with transverse welds, changes in crack angles cause the welds to provide additional strength. The combination joints can therefore develop strength greater than estimated by adding the strength of bolted joints in proportion to those of welded joints. Consequently, using the slip resistance as the available strength of high-strength bolts is recommended. That ensures a margin of safety in the strength design of combination joints.

Designing method for fire safety of steel box bridge girders

  • Li, Xuyang;Zhang, Gang;Kodur, Venkatesh;He, Shuanhai;Huang, Qiao
    • Steel and Composite Structures
    • /
    • 제38권6호
    • /
    • pp.657-670
    • /
    • 2021
  • This paper presents a designing method for enhancing fire resistance of steel box bridge girders (closed steel box bridge girder supporting a thin concrete slab) through taking into account such parameters namely; fire severity, type of longitudinal stiffeners (I, L, and T shaped), and number of longitudinal stiffeners. A validated 3-D finite element model, developed through the computer program ANSYS, is utilized to go over the fire response of a typical steel box bridge girder using the transient thermo-structural analysis method. Results from the numerical analysis show that fire severity and type of longitudinal stiffeners welded on bottom flange have significant influence on fire resistance of steel box bridge girders. T shaped longitudinal stiffeners applied on bottom flange can highly prevent collapse of steel box bridge girders towards the end of fire exposure. Increase of longitudinal stiffeners on bottom flange and web can slightly enhance fire resistance of steel box bridge girders. Rate of deflection-based criterion can be reliable to evaluate fire resistance of steel box bridge girders in most fire exposure cases. Thus, T shaped longitudinal stiffeners on bottom flange incorporated into bridge fire-resistance design can significantly enhance fire resistance of steel box bridge girders.

Monitoring and vibration control of a fluid catalytic cracking unit

  • Battista, Ronaldo C.;Varela, Wendell D.;Gonzaga, Igor Braz N.
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.577-588
    • /
    • 2022
  • Oil refineries' Fluid Catalytic Cracking Units (FCCU) when in full operation may exhibit strong fluid dynamics caused by turbulent flow in the piping system that may induce vibrations in other mechanical and structural components of the Unity. This paper reports on the experimental-theoretical-computational program performed to get the vibration properties and the dynamic response amplitudes to find out alternative solutions to attenuate the excessive vibrations that were causing fatigue fractures in components of the bottle like reactor-regenerator of an FCC unit in operation in an existing oil refinery in Brazil. Solutions to the vibration problem were sought with the aid of a 3D finite element model calibrated with the results obtained from experimental measurements. A short description of the found solutions is given and their effectiveness are shown by means of numerical results. The solutions were guided by the concepts of structural stiffening and dynamic control performed by a nonlinear pendulum controller whose mechanical design was based on parameters determined by means of a parametric study carried out with 2D and 3D mathematical models of the coupled pendulum-structure system. The effectiveness of the proposed solutions is evaluated in terms of the fatigue life of critical welded connections.

Optimal sustainable design of steel-concrete composite footbridges considering different pedestrian comfort levels

  • Fernando L. Tres Junior;Guilherme F. Medeiros;Moacir Kripka
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.647-659
    • /
    • 2024
  • Given the increased interest in enhancing structural sustainability, the current study sought to apply multiobjective optimization to a footbridge with a steel-concrete composite I-girder structure. It was considered as objectives minimizing the cost for building the structure, the environmental impact assessed by CO2 emissions, and the vertical accelerations created by human-induced vibrations, with the goal of ensuring pedestrian comfort. Spans ranging from 15 to 25 meters were investigated. The resistance of the slab's concrete, the thickness of the slab, the dimensions of the welded steel I-profile, and the composite beam interaction degree were all evaluated as design variables. The optimization problem was handled using the Multiobjective Harmony Search (MOHS) metaheuristic algorithm. The optimization results were used to generate a Pareto front for each span, allowing us to assess the correlations between different objectives. By evaluating the values of design variables in relation to different levels of pedestrian comfort, it was identified optimal values that can be employed as a starting point in predimensioning of the type of structure analyzed. Based on the findings analysis, it is possible to highlight the relationship between the structure's cost and CO2 emission objectives, indicating that cost-effective solutions are also environmentally efficient. Pedestrian comfort improvement is especially feasible in smaller spans and from a medium to a maximum level of comfort, but it becomes expensive for larger spans or for increasing comfort from minimum to medium level.