• 제목/요약/키워드: weka naive bayes

검색결과 5건 처리시간 0.019초

Map-Reduce 프로그래밍 모델 기반의 나이브 베이스 학습 알고리즘 (Naive Bayes Learning Algorithm based on Map-Reduce Programming Model)

  • 강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.208-209
    • /
    • 2011
  • 본 논문에서는, 맵-리듀스 모델 기반에서 나이브 베이스 알고리즘으로 학습과 추론을 수행하는 방안에 대해 소개하고자 한다. 이를 위해 Apache Mahout를 이용하여 분산 나이브 베이스 (Distributed Naive Bayes) 학습 알고리즘을 University of California, Irvine (UCI)의 벤치마크 데이터 집합에 적용하였다. 실험 결과, Apache Mahout의 분산 나이브 베이스 학습 알고리즘은 일반적인 WEKA의 나이브 베이스 학습 알고리즘과 그 성능면에서 큰 차이가 없음을 알 수 있었다. 이러한 결과는, 향후 빅 데이터 환경에서 Apache Mahout와 같은 맵-리듀스 모델 기반 시스템이 기계 학습에 큰 기여를 할 수 있음을 나타내는 것이다.

  • PDF

기계경비시스템 오경보 이벤트 분석을 위한 데이터마이닝 기법 연구 (A Study of Data Mining Methodology for Effective Analysis of False Alarm Event on Mechanical Security System)

  • 김종민;최경호;이동휘
    • 융합보안논문지
    • /
    • 제12권2호
    • /
    • pp.61-70
    • /
    • 2012
  • 본 연구의 목적은 효율적인 기계경비시스템 오경보 이벤트 분석을 위해 가장 적합한 데이터마이닝 기법을 도출하는데 있다. 이를 위해 기계경비시스템 오경보의 발생원인을 살펴보고, 오경보 시의 출동건수, 오경보율 그리고 오경보원인의 통계자료를 토대로한 데이터를 데이터마이닝 프로그램인 WEKA에 맞게 변환시켜 여러 알고리즘에 적용 및 분석하였다. 본 논문에서는 적합한 데이터마이닝 기법을 찾기 위해 Decision Tree, Naive Bayes, BayesNet Apriori, J48Tree 알고리즘을 활용하였고, 분석을 통해 생성된 가장 높은 값을 도출하여 해당 알고리즘의 적용 가능성을 확인하였다. 이와 같은 연구를 통해 효율적으로 기계경비시스템의 오경보를 예측하고, 오경보에 대한 보다 효율적인 대처방안을 모색할 수 있음을 보여주었다.

Development and application of a floor failure depth prediction system based on the WEKA platform

  • Lu, Yao;Bai, Liyang;Chen, Juntao;Tong, Weixin;Jiang, Zhe
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.51-59
    • /
    • 2020
  • In this paper, the WEKA platform was used to mine and analyze measured data of floor failure depth and a prediction system of floor failure depth was developed with Java. Based on the standardization and discretization of 35-set measured data of floor failure depth in China, the grey correlation degree analysis on five factors affecting the floor failure depth was carried out. The correlation order from big to small is: mining depth, working face length, floor failure resistance, mining thickness, dip angle of coal seams. Naive Bayes model, neural network model and decision tree model were used for learning and training, and the accuracy of the confusion matrix, detailed accuracy and node error rate were analyzed. Finally, artificial neural network was concluded to be the optimal model. Based on Java language, a prediction system of floor failure depth was developed. With the easy operation in the system, the prediction from measured data and error analyses were performed for nine sets of data. The results show that the WEKA prediction formula has the smallest relative error and the best prediction effect. Besides, the applicability of WEKA prediction formula was analyzed. The results show that WEKA prediction has a better applicability under the coal seam mining depth of 110 m~550 m, dip angle of coal seams of 0°~15° and working face length of 30 m~135 m.

사상체질 진단검사를 위한 데이터마이닝 알고리즘 연구 (Data mining Algorithms for the Development of Sasang Type Diagnosis)

  • 홍진우;김영인;박소정;김병철;엄일규;황민우;신상우;김병주;권영규;채한
    • 동의생리병리학회지
    • /
    • 제23권6호
    • /
    • pp.1234-1240
    • /
    • 2009
  • This study was to compare the effectiveness and validity of various data-mining algorithm for Sasang type diagnostic test. We compared the sensitivity and specificity index of nine attribute selection and eleven class classification algorithms with 31 data-set characterizing Sasang typology and 10-fold validation methods installed in Waikato Environment Knowledge Analysis (WEKA). The highest classification validity score can be acquired as follows; 69.9 as Percentage Correctly Predicted index with Naive Bayes Classifier, 80 as sensitivity index with LWL/Tae-Eum type, 93.5 as specificity index with Naive Bayes Classifier/So-Eum type. The classification algorithm with highest PCP index of 69.62 after attribute selection was Naive Bayes Classifier. In this study we can find that the best-fit algorithm for traditional medicine is case sensitive and that characteristics of clinical circumstances, and data-mining algorithms and study purpose should be considered to get the highest validity even with the well defined data sets. It is also confirmed that we can't find one-fits-all algorithm and there should be many studies with trials and errors. This study will serve as a pivotal foundation for the development of medical instruments for Pattern Identification and Sasang type diagnosis on the basis of traditional Korean Medicine.

메타 태그를 이용한 자동 웹페이지 분류 시스템 (An Automatic Web Page Classification System Using Meta-Tag)

  • 김상일;김화성
    • 한국통신학회논문지
    • /
    • 제38B권4호
    • /
    • pp.291-297
    • /
    • 2013
  • 최근 월드 와이드 웹(World Wide Web)의 사용이 폭발적으로 증가함에 따라 다양한 정보를 포함하고 있는 웹 페이지들의 양도 엄청나게 증가 하였다. 따라서 웹상에 존재 하고 있는 웹페이지들에 대한 접근을 용이하게 하고, 그룹화를 통한 검색을 가능하게 하기 위해 웹 페이지 분류의 필요성이 대두 되고 있다. 웹 페이지 분류는 기존의 웹 상에 산재 되어 있는 웹페이지들을 비슷한 문서 유형 또는 같은 키워드를 사용하는 문서들의 묶음으로 구분하는 작업을 의미하며, 웹 페이지 분류 기술은 웹페이지 검색, 그룹 검색, 메일 필터링 등의 분야에 응용될 수 있는 기술이다. 하지만 웹상에 존재하는 웹페이지들을 사람이 수동적으로 분류하는 방법으로는 현재 월드 와이드 웹에 존재하는 엄청난 양의 웹페이지들을 처리할 수 없으며, 자동적인 분류 방법 역시 서로 다른 형태로 작성된 웹페이지들을 정확하게 분류할 수 없다는 문제로 인해 한계를 보이고 있다. 본 논문에서는 서로 다른 형태로 작성된 웹 문서들에 대한 부정확한 분류 문제를 해결하기위해 웹페이지에 존재하는 메타 정보를 획득하여 자동적으로 분류하는 메타 태그기반의 자동화된 웹페이지 분류 시스템을 제안하였다.