• Title/Summary/Keyword: weighting strategy

Search Result 66, Processing Time 0.029 seconds

Weighting objectives strategy in multicriterion fuzzy mechanical and structural optimization

  • Shih, C.J.;Yu, K.C.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.373-382
    • /
    • 1995
  • The weighting strategy has received a great attention and has been widely applied to multicriterion optimization. This gaper examines a global criterion method (GCM) with the weighting objectives strategy in fuzzy structural engineering problems. Fuzziness of those problems are in their design goals, constraints and variables. Most of the constraints are originated from analysis of engineering mechanics. The GCM is verified to be equivalent to fuzzy goal programming via a truss design. Continued and mixed discrete variable spaces are presented and examined using a fuzzy global criterion method (FGCM). In the design process a weighting parameter with fuzzy information is introduced into the design and decision making. We use a uniform machine-tool spindle as an illustrative example in continuous design space. Fuzzy multicriterion optimization in mixed design space is illustrated by the design of mechanical spring stacks. Results show that weighting strategy in FGCM can generate both the best compromise solution and a set of Pareto solutions in fuzzy environment. Weighting technique with fuzziness provides a more relaxed design domain, which increases the satisfying degree of a compromise solution or improves the final design.

Application and Implementation of Fuzzy Relational Request for Improving the Performance of Automated Reasoning (자동화추론의 성능개선을 위한 퍼지관계요구의 응용 및 구현)

  • Cho, Jae-Hee;Jin, Jeong-Ae;Kim, Yong-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.8
    • /
    • pp.2050-2060
    • /
    • 1998
  • Weighting strategy is one of the necessary control strategies in automated reasoning to solve problecs within allowable time and computer memory. But, the strategy still consumes too much time since it depends soly on the user's experience and needs much of the user's manual work at each stage. This research suggests a tool which automates the weighting system to generate the weighting thesaurus and merges it to the mechanical theorem prover.

  • PDF

Determining the Weighting Matrices of Optimal Controllers considering Structural Energy (구조물의 에너지를 고려한 최적제어기의 가중행렬 결정)

  • 민경원;이영철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.475-482
    • /
    • 2002
  • This paper provides the systematic procedure to determine the weighting matrices of optimal controllers considering structural energy. Optimal controllers consist of LQR and ILQR. The weighting matrices are needed first in the conventional optimal control design strategy. However, they are in general dependent on the experienced knowledge of controll designers. Applying the Lyapunov function to the total structural energy and using the contrition that its derivative is negative, we can determine the weighting matrices without difficulty. It is proven that the control efficiency is achieved well for LQR and ILQR.

  • PDF

Phase-matched Harmonic Generation and Variable Slope Exponential Weighting for Virtual Bass System (위상 일치와 가변 지수 감쇠 가중치 부여 방법이 적용된 가상 저음 시스템)

  • Moon, Hyeongi;Park, Young-cheol;Whang, Young-soo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.889-898
    • /
    • 2016
  • Virtual Bass System (VBS) is widely used to extend the lower frequency limit of small loudspeakers, which generates harmonics of a fundamental frequency. The perceptual quality of the VBS is highly dependent on the harmonic weighting strategy. There have been several weighting methods, including exponential attenuation and timbre matching. However, it is essential to match phases between harmonics in the original signal and generate harmonics to precisely convey the weighting strategy. This paper shows the limitations of the previous harmonic weighting schemes and proposes a new harmonic weighting scheme. The proposed weighting scheme proposes phase matching between the original and generated harmonics and varies the slope of the attenuation weighting dynamically according to the missing fundamental frequency. Objective and subjective tests show that the proposed harmonic weighting scheme provides more natural and effective bass perception in a limited situation than the conventional schemes, which implies that the phase matching is essential for the high quality bass enhancement.

Comparative Study on Active Control Algorithms through Weighting functions (가중함수에 따른 능동제어 알고리듬의 비교 연구)

  • 민경원;김성춘;황성호;정진옥
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.431-438
    • /
    • 2000
  • The cost function consists of the weighting functions concerning the structural responses to be controlled and the controller capability. Therefore, the control efficiency depends on the characteristics of the weighting functions. The objective of this paper is the comparative study of the time domain control strategies of LQR and LQG and the frequency domain strategy of H₂ by setting the equivalent weighting functions to the all control strategies. As a result of analysis, LQR strategy is found to be more efficient than other strategies in terms of the response reduction. but the control force is found to be a little highter. As LQG can compensate the limitation of LQR that all state variables should be identified, LQG is more acceptable algorithm than LQR. Furthermore LQG shows a good performance both in the response reduction and the control force. Finally H₂ algorithm is employed to illustrate the importance of weighting filters considering the frequency characteristics of the response and the controller. It Is shown that the H₂ algorithm is found to be the most effective one for the response control with a little control force having a low frequency band.

  • PDF

Bidirectional Link Resource Allocation Strategy in GFDM-based Multiuser SWIPT Systems

  • Xu, Xiaorong;Sun, Minghang;Zhu, Wei-Ping;Feng, Wei;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.319-333
    • /
    • 2022
  • In order to enhance system energy efficiency, bidirectional link resource allocation strategy in GFDM-based multiuser SWIPT systems is proposed. In the downlink channel, each SWIPT user applies power splitting (PS) receiver structure in information decoding (ID) and non-linear energy harvesting (EH). In the uplink channel, information transmission power is originated from the harvested energy. An optimization problem is constructed to maximize weighted sum ID achievable rates in the downlink and uplink channels via bidirectional link power allocation as well as subcarriers and subsymbols scheduling. To solve this non-convex optimization problem, Lagrange duality method, sub-gradient-based method and greedy algorithm are adopted respectively. Simulation results show that the proposed strategy is superior to the fixed subcarrier scheme regardless of the weighting coefficients. It is superior to the heuristic algorithm in larger weighting coefficients scenario.

Position and Force Control Based on Fuzzy Switching Algorithm

  • Jaehyun Jin;Sungho Ahn;Park, Byungsuk;Jisup Yoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.85.1-85
    • /
    • 2002
  • In this paper, a control strategy of position and force is proposed based on a switching algorithm. The main focus is the control of position and force in the same direction. The switching algorithm based on a fuzzy algorithm determines the weighting value of force control. First, the force control is dominant. If the position gets closer to the desire position, the weighting value of force control is closer to zero. The proposed algorithm is shown to be satisfactory to position and force control and the weighting factor is quite successful by simulation examples.

  • PDF

Robust Algorithms for Combining Multiple Term Weighting Vectors for Document Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Term weighting is a popular technique that effectively weighs the term features to improve accuracy in document classification. While several successful term weighting algorithms have been suggested, none of them appears to perform well consistently across different data domains. In this paper we propose several reasonable methods to combine different term weight vectors to yield a robust document classifier that performs consistently well on diverse datasets. Specifically we suggest two approaches: i) learning a single weight vector that lies in a convex hull of the base vectors while minimizing the class prediction loss, and ii) a mini-max classifier that aims for robustness of the individual weight vectors by minimizing the loss of the worst-performing strategy among the base vectors. We provide efficient solution methods for these optimization problems. The effectiveness and robustness of the proposed approaches are demonstrated on several benchmark document datasets, significantly outperforming the existing term weighting methods.

An Application of Case-Based Reasoning in Forecasting a Successful Implementation of Enterprise Resource Planning Systems : Focus on Small and Medium sized Enterprises Implementing ERP (성공적인 ERP 시스템 구축 예측을 위한 사례기반추론 응용 : ERP 시스템을 구현한 중소기업을 중심으로)

  • Lim Se-Hun
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.1
    • /
    • pp.77-94
    • /
    • 2006
  • Case-based Reasoning (CBR) is widely used in business and industry prediction. It is suitable to solve complex and unstructured business problems. Recently, the prediction accuracy of CBR has been enhanced by not only various machine learning algorithms such as genetic algorithms, relative weighting of Artificial Neural Network (ANN) input variable but also data mining technique such as feature selection, feature weighting, feature transformation, and instance selection As a result, CBR is even more widely used today in business area. In this study, we investigated the usefulness of the CBR method in forecasting success in implementing ERP systems. We used a CBR method based on the feature weighting technique to compare the performance of three different models : MDA (Multiple Discriminant Analysis), GECBR (GEneral CBR), FWCBR (CBR with Feature Weighting supported by Analytic Hierarchy Process). The study suggests that the FWCBR approach is a promising method for forecasting of successful ERP implementation in Small and Medium sized Enterprises.

  • PDF

Weighting Matrices of LQR and ILQR Controllers Considering Structural Energy (구조물의 에너지를 고려한 LQR 및 ILQR제어기의 가중행렬)

  • 민경원;이영철;박민규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.49-53
    • /
    • 2002
  • This paper provides the systematic procedure to determine the weighting matrices of optimal controllers considering structural energy. Optimal controllers consist of LQR and ILQR. The weighting matrices are needed first in the conventional optimal control design strategy. However, they are in general dependent on the experienced knowledge of control designers. Applying the Lyapunov function to total structural energy and using the condition that its derivative is negative, we can determine the weighting matrices without difficulty. It is proven that the control efficiency with using determined weighting matrices is achieved well for LQR and ILQR controllers.