• 제목/요약/키워드: weighted network

검색결과 517건 처리시간 0.027초

인터넷 기반 클러스터 시스템 환경에서 효율적인 부하공유 기법 (An Efficient Load-Sharing Scheme for Internet-Based Clustering Systems)

  • 최인복;이재동
    • 한국멀티미디어학회논문지
    • /
    • 제7권2호
    • /
    • pp.264-271
    • /
    • 2004
  • 인터넷기반의 클러스터 시스템 환경에서 부하공유 알고리즘은 네트워크의 특성 및 노드의 이질성에 따른 부하 불균형에 효과적으로 대처 할 수 있어야 한다. 본 논문에서 제안하는 효율적인 부하공유기법은 Weighted Factoring 알고리즘을 기반으로 스케줄러를 생성하고 여기에 적응할당정책과 개선된 고정 분할 단위 알고리즘을 적용하여 작업을 분배하는 것이다. 본 논문에서 적용한 적응할당정책은 상대적으로 작업속도가 느린 종노드의 작업을 빠른 종노드가 대신 수행하도록 하는 기법이며, 개선된 고정 분할 단위 알고리즘은 종노드의 계산시간과 데이터전송에 필요한 네트워크 통신시간을 겹치도록 하는 것이다. 제안된 알고리즘의 성능 평가를 위한 시스템 환경에서 멀티미디어 응용에 많이 사용되는 행렬의 곱셈 프로그램을 PVM을 통하여 실험한 결과, 본 논문에서 제안한 알고리즘이 NOW 환경에서 우수한 Send, GSS, Weighted Factoring 알고리즘보다 각각 75%, 79%, 그리고 17% 효율적임을 보였다.

  • PDF

퍼지신경망과 비중복면적 분산 측정법을 이용한 최소의 특징입력 및 퍼지규칙의 추출 (Extracting Minimized Feature Input And Fuzzy Rules Using A Fuzzy Neural Network And Non-Overlap Area Distribution Measurement Method)

  • 임준식
    • 한국지능시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.599-604
    • /
    • 2005
  • 본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions, NEWFM)을 이용하여 위스콘신 유방암(Wisconsin breast cancer)의 진단을 수행하는 퍼지규칙을 추출하고, 비중복면적 분산 측정법을 사용하여 특징입력수를 최소로하는 방안을 제안하고 있다. NEWFM 구조의 중간 부분인 하이퍼박스(hyperbox)들은n 개의 대, 중, 소로 구성된 가중 퍼지소속함수 집합으로 구성되며, 학습 후 각 집합의 대, 중, 소로 구성된 가중 퍼지소속함수는 퍼지집합의 경계합(bounded sum)을 사용하여 다시 하나의 가중 퍼지소속함수로 합성(BSWFM) 된다. n 개의 특징입력(feature input)은 학습된 모든 하이퍼박스에 연결되어 예측 작업을 수행한다. 여기에 비중복면적 분산 측정법을 적용하여 중요도가 낮은 특징입력을 제거하면서 최소의 m 개 특징입력만을 사용한 하이퍼박스로 단순화시킨다. 이러한 방법으로 위스콘신 유방암의 9개의 특징입력 중 4개를 사용하여 NEWFM으로 추출된 2개의 퍼지규칙은 99.71%의 예측 인식율을 가지며 이는 퍼지규칙의 수와 인식율에 있어 현재 발표된 논문의 결과보다 우수함을 보여준다.

NEWFM을 이용한 자동 조기심실수축 탐지 (Automatic Premature Ventricular Contraction Detection Using NEWFM)

  • 임준식
    • 한국지능시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.378-382
    • /
    • 2006
  • 본 논문은 가중 퍼지소속함수 기반 신경망(neural network with weighted fuzzy membership functions, NEWFM)을 이용하여 심전도(ECG) 신호로부터 조기심실수축(premature ventricular contractions, PVC)을 자동 탐지하는 방안을 제시하고 있다. NEWFM은 MIT-BIH 데이터베이스의 부정맥 심전도를 웨이블릿 변환(wavelet transform, WT)한 계수로부터 학습하여 정상 파형과 PVC 파형을 구분한다. 비중복면적 분산 측정법을 적용하여 중요도가 가장 높은 계수 2개를 추출하여 분류규칙을 최소화하였고, 이를 사용하여 99.90%의 PVC 분류성능을 나타내었다. 또한 추출된 두 계수의 R파를 기준으로 한 위치를 제시함으로써 두 위치의 정보만으로 PVC를 탐지할 수 있음을 보여주었다.

A Triple Residual Multiscale Fully Convolutional Network Model for Multimodal Infant Brain MRI Segmentation

  • Chen, Yunjie;Qin, Yuhang;Jin, Zilong;Fan, Zhiyong;Cai, Mao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.962-975
    • /
    • 2020
  • The accurate segmentation of infant brain MR image into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is very important for early studying of brain growing patterns and morphological changes in neurodevelopmental disorders. Because of inherent myelination and maturation process, the WM and GM of babies (between 6 and 9 months of age) exhibit similar intensity levels in both T1-weighted (T1w) and T2-weighted (T2w) MR images in the isointense phase, which makes brain tissue segmentation very difficult. We propose a deep network architecture based on U-Net, called Triple Residual Multiscale Fully Convolutional Network (TRMFCN), whose structure exists three gates of input and inserts two blocks: residual multiscale block and concatenate block. We solved some difficulties and completed the segmentation task with the model. Our model outperforms the U-Net and some cutting-edge deep networks based on U-Net in evaluation of WM, GM and CSF. The data set we used for training and testing comes from iSeg-2017 challenge (http://iseg2017.web.unc.edu).

Neural-network-based Impulse Noise Removal Using Group-based Weighted Couple Sparse Representation

  • Lee, Yongwoo;Bui, Toan Duc;Shin, Jitae;Oh, Byung Tae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.3873-3887
    • /
    • 2018
  • In this paper, we propose a novel method to recover images corrupted by impulse noise. The proposed method uses two stages: noise detection and filtering. In the first stage, we use pixel values, rank-ordered logarithmic difference values, and median values to train a neural-network-based impulse noise detector. After training, we apply the network to detect noisy pixels in images. In the next stage, we use group-based weighted couple sparse representation to filter the noisy pixels. During this second stage, conventional methods generally use only clean pixels to recover corrupted pixels, which can yield unsuccessful dictionary learning if the noise density is high and the number of useful clean pixels is inadequate. Therefore, we use reconstructed pixels to balance the deficiency. Experimental results show that the proposed noise detector has better performance than the conventional noise detectors. Also, with the information of noisy pixel location, the proposed impulse-noise removal method performs better than the conventional methods, through the recovered images resulting in better quality.

뉴로-퍼지 신경망 기반 최적의 HRV특징을 이용한 우울증진단 알고리즘 (Neuro-Fuzzy Network-based Depression Diagnosis Algorithm Using Optimal Features of HRV)

  • 장진흥;전설위;임준식
    • 한국콘텐츠학회논문지
    • /
    • 제12권2호
    • /
    • pp.1-9
    • /
    • 2012
  • 본 논문은 가중 퍼지소속함수 기반 신경망 (Neural Network with Weighted Fuzzy Membership functions, NEWFM)과 심박수 변이도(Heart Rate Variability, HRV)를 이용하여 우울증 진단알고리즘을 제안하고 있다. 본 알고리즘에서 사용할 NEWFM의 입력특징을 추출하기 위해서 주파수도메인 특징추출, 시간도메인 특징추출, 웨이블릿변환 특징추출, 포인케어변환 특징추출 방법을 이용하여 22개의 초기 HRV 특징들을 추출하였다. 또한 NEWFM에서 제공하는 비중복면적 분산측정법 (Non-overlap Area Distribution Measurement, NADM)에 의해 입력특징의 중요도를 평가하여 22개의 초기특징으로부터 중요도가 가장 높은 6개 최적입력특징을 선택하였다. 이 6개 특징을 이용하여 우울증을 진단한 결과는 95.8% 의 정확도를 나타내었다.

인터넷에서 정보시스템의 생존성 관리 모델 (A Study on Survivability Management Model for Information Systems Over Internet)

  • 김황래;박진섭
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1185-1193
    • /
    • 2006
  • 차세대 인터넷과 같은 무한 네트워크에서 정보시스템은 다양한 공격과 사고의 발생으로 손상을 입고 그 사용자들은 막대한 비용의 손실을 입는다. 본 논문에서는 보안 시스템의 비용효과 측면에서 적정수준의 투자를 할 수 있는 효과적인 의사결정을 지원할 수 있도록 하는 정보시스템의 생존성 관리 모델을 제안하였다. 시뮬레이션을 통하여 서비스 가중치를 고려한 비용에 따라 생존성이 어떻게 변화하는지를 검사하였다. 방어 비용이 방어 수준에 따라 변화하기 때문에 비용/생존성과 서비스 가중치/생존성 그래프를 도출하여 관리자가 적정 수준의 보안을 유지하는 방어 비용을 결정할 있도록 하였다.

  • PDF

네트워크 중심성 지표를 이용한 서울 수도권 지하철망 특성 분석 (Analysis of Seoul Metropolitan Subway Network Characteristics Using Network Centrality Measures)

  • 이정원;이강원
    • 한국철도학회논문집
    • /
    • 제20권3호
    • /
    • pp.413-422
    • /
    • 2017
  • 본 연구에서는 네트워크 중심성 지표를 사용하여 지하철 네트워크의 개별 노드의 중요성을 분석하고 이로부터 한국 지하철 네트워크의 특성을 분석하였다. 중심성 측도로 매개, 근접 그리고 차수 중심성을 사용하였다. 본 연구에서는 기존에 제안된 매개 중심성 지표와 승객들의 실제 흐름양을 함께 고려한 가중 매개 중심성 지표를 새롭게 제안하였다. 그리고 본 연구에서 제안한 여러 중심성 지표들 사이의 상관관계를 조사함으로서 서울 수도권 지하철과 승객 흐름의 구조적 특성 등을 조사하였다. 아울러 승객들 흐름의 편중 현상을 조사하기 위하여 멱분포(Power-law) 분석을 수행하여 결과 분석의 신빙성을 더하였다.

Correlation Distance Based Greedy Perimeter Stateless Routing Algorithm for Wireless Sensor Networks

  • Mayasala, Parthasaradhi;Krishna, S Murali
    • International Journal of Computer Science & Network Security
    • /
    • 제22권1호
    • /
    • pp.139-148
    • /
    • 2022
  • Research into wireless sensor networks (WSNs) is a trendy issue with a wide range of applications. With hundreds to thousands of nodes, most wireless sensor networks interact with each other through radio waves. Limited computational power, storage, battery, and transmission bandwidth are some of the obstacles in designing WSNs. Clustering and routing procedures have been proposed to address these concerns. The wireless sensor network's most complex and vital duty is routing. With the Greedy Perimeter Stateless Routing method (GPSR), an efficient and responsive routing protocol is built. In packet forwarding, the nodes' locations are taken into account while making choices. In order to send a message, the GPSR always takes the shortest route between the source and destination nodes. Weighted directed graphs may be constructed utilising four distinct distance metrics, such as Euclidean, city block, cosine, and correlation distances, in this study. NS-2 has been used for a thorough simulation. Additionally, the GPSR's performance with various distance metrics is evaluated and verified. When compared to alternative distance measures, the proposed GPSR with correlation distance performs better in terms of packet delivery ratio, throughput, routing overhead and average stability time of the cluster head.

가중 원형 정합을 이용한 인쇄체 숫자 인식 (Machine-printed Numeral Recognition using Weighted Template Matching)

  • 정민철
    • 한국산학기술학회논문지
    • /
    • 제10권3호
    • /
    • pp.554-559
    • /
    • 2009
  • 본 논문에서는 인쇄체 숫자를 인식하기 위해 가중 원형 정합(weighted template matching) 방법을 제안한다. 원형 정합은 입력 영상 전체를 하나의 전역적인 특징으로 처리하는 데 반해, 제안된 가중 원형 정합은 패턴의 특징이 나타나는 국부적인 영역에 해밍 거리(Hamming distance)의 가중치를 두어 패턴 특징을 강조하여 숫자 패턴의 인식률을 높인다. 실험에서는 기존의 원형 정합을 사용했을 때, 오류 역전파 신경망을 사용했을 때와 가중 원형 정합을 사용했을 때의 혼돈 행렬(confusion matrix)을 각각 서로 비교한다. 실험 결과는 본 논문에서 제안한 방법에 의해 인쇄체 숫자의 인식률이 크게 향상된 것을 보인다.