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Abstract 
 

In this paper, we propose a novel method to recover images corrupted by impulse noise. The 
proposed method uses two stages: noise detection and filtering. In the first stage, we use pixel 
values, rank-ordered logarithmic difference values, and median values to train a 
neural-network-based impulse noise detector. After training, we apply the network to detect 
noisy pixels in images. In the next stage, we use group-based weighted couple sparse 
representation to filter the noisy pixels. During this second stage, conventional methods 
generally use only clean pixels to recover corrupted pixels, which can yield unsuccessful 
dictionary learning if the noise density is high and the number of useful clean pixels is 
inadequate. Therefore, we use reconstructed pixels to balance the deficiency. Experimental 
results show that the proposed noise detector has better performance than the conventional 
noise detectors. Also, with the information of noisy pixel location, the proposed impulse-noise 
removal method performs better than the conventional methods, through the recovered images 
resulting in better quality. 
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1. Introduction 

In digital image processing, image denoising is an essential and challenging research topic 
used in numerous circumstances. Digital images often suffer from various types of noise. For 
example, impulse noise (IN) corrupts images during image acquisition, recording, and 
transmission [1]. IN is categorized as fixed-valued impulse noise (FVIN), also known as 
salt-and-pepper noise (SPN), and random-valued impulse noise (RVIN). When a pixel in an 
8-bit image is corrupted by FVIN, its pixel value is either 0 or 255 with equal probability. An 
RVIN-corrupted pixel, on the other hand, has a value that is randomly changed between 0 and 
255. Therefore, RVIN is more difficult to detect in a noisy image than FVIN. 

Several techniques have been proposed to denoise IN corrupted images. The median filter is 
one popular method. The median filter first computes a median value in a mask. Next, the 
pixel in the center of the mask is replaced by the median value. However, because it adopts 
only the median value, the original pixel value cannot be found. Therefore, its performance is 
poor and it cannot preserve fine edges. To address those issues, some median filter–based 
modifications have been designed. However, those techniques, such as the weighted median 
filter and center weighted median (CWM) filter [2], still fail to remove IN thoroughly because 
of the limitations of the median filter. Recently, image in-painting techniques work very well 
for the noise removal [3-5]. In [4], salt-and-pepper noise removal method is proposed using 
image in-painting method. It takes noisy pixels as missing data and recovers the image by 
carefully choosing convolution mask according to the local regions. However, it is limited to 
salt-and-pepper noise. 

Because IN corrupts only a few pixels, leaving the rest untouched, many IN removal 
techniques use two stages [6-14]. Those methods use noise detectors to detect IN-corrupted 
pixels in the first stage and then recover those pixels in the second stage. The robust 
outlyingness ratio with nonlocal means [6] and weighted mean filter with a two-phase detector 
[7] are examples that adopt the two-stage method.  

Many researchers have proposed IN detectors. Chen et al. tried to solve the poor 
performance of median-based IN detection strategies for RVIN [10] by proposing the adaptive 
center-weighted median (ACWM) method that combines CWM with various center weights. 
Abreu et al. proposed the signal-dependent rank ordered mean (SDROM) technique, which 
replaces noise pixels with the rank-ordered mean of the surrounding pixels [11]. Schulte et al. 
proposed the fuzzy impulse noise detection and reduction method (FIDRM), which uses fuzzy 
gradient values to determine whether a particular pixel is IN-corrupted [12]. It calculates eight 
different gradient values according to direction, and considers two related gradient values in 
each direction to verify whether an edge in an image is causing a large gradient value. Its 
membership function calculates the gradient values using a fuzzy rule to identify noisy pixels. 
Schulte et al. also proposed the fuzzy random impulse noise reduction method (FRINRM) [13], 
a two-step fuzzy filter that uses fuzzy logic to enhance images corrupted with IN.  
 

In the past few years, some neural network (NN)–based methods have been published. Sa et 
al. proposed the improved adaptive impulse noise suppression (IAINS) technique [14]. It uses 
the pixel-wise median of the absolute deviations from the median and rank-ordered absolute 
difference (ROAD) to train an NN. The trained network decides whether an identified pixel is 
clean or corrupted. Turkmen also proposed an artificial NN-based detector (ANN) that trains a 
network using ROAD and rank-ordered logarithmic difference (ROLD) [15]. Unlike [14], it 
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trains the NN using an artificially designed image with a gradient and square box patterns that 
are IN-corrupted with 70% noise density. 

For the filtering stage, sparse representation (SR) has gained an excellent reputation over 
many years for degraded image restoration [16-18]. The basic idea of SR is that a signal can be 
estimated using a spare coefficient vector and a set of atoms called a dictionary. SR has been 
applied in many image processing areas, such as image denoising, deblurring, compressive 
sensing, super-resolution, image fusion and object recognition. Group-based sparse 
representation (GSR) [19] is one technique that provides a complete solution for image 
restoration. For image denoising, GSR performs well in removing Gaussian noise (GN). 
Unfortunately, GN and IN have different characteristics, so GSR methods for removing GN 
often fail when used for IN removal. 

In this paper, we propose the NN-based Detector-Weighted couple group-based SR method 
(NND-WSR), which uses two stages to recover IN corrupted images. Our main contributions 
are as follows:  

• To propose an IN detector based on an NN. 
• To propose the WSR method to remove IN. 
• To overcome the limitations of GSR and compensate for the insufficient 

information in images with high noise density by applying a weighted coupling 
method. 

• To analyze NN-based and deep-learning-based noise detectors. 
The rest of the paper is organized as follows. In Section 2, we provide background about IN 

model and several techniques to facilitate understanding of our proposed method. In Section 3, 
we describe our proposed method. In Section 4, we show experimental results and discuss 
deep-learning-based IN detectors. We conclude in Section 5. 

2. Background 
In IN removal, many proposed techniques use a two-stage process [6-15]. In the first stage, a 
noise detector identifies IN-corrupted pixels. In the second stage, the noisy pixels are 
recovered in some way. In this section, we discuss the noise model and reference methods that 
support our proposed technique. 

2.1 Noise Model 
Let 𝑥𝑖𝑗 be the gray level of an original image located at (𝑖, 𝑗) in the range of [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥], and 
let 𝑦𝑖𝑗 be the gray level of a corrupted image located at (𝑖, 𝑗). Impulse noise is expressed as 
 

𝑦𝑖𝑗 = �
𝑥𝑖𝑗  𝑤𝑖𝑡ℎ 1− 𝑝
𝜂𝑖𝑗 𝑤𝑖𝑡ℎ 𝑝,        

�                                                    (1) 

 
where 𝜂𝑖𝑗  is the corrupted IN value with a noise density 𝑝 located at (𝑖, 𝑗). When 𝜂𝑖𝑗  is a 
random value selected in the range of [𝑣𝑚𝑖𝑛,𝑣𝑚𝑎𝑥], the image is said to be corrupted by RVIN, 
and if 𝜂𝑖𝑗 is either 𝑣𝑚𝑖𝑛 or 𝑣𝑚𝑎𝑥 , it is known as FVIN or SPN. An 8-bit image has 𝑣𝑚𝑖𝑛 and 
𝑣𝑚𝑎𝑥  of 0 and 255, respectively. In this work, we consider only RVIN noise. 

2.2 ROLD Statistic 
The ROLD statistic was proposed in [9] as a modification of ROAD [8]. ROAD is a noise 
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detector that measures the probability that a pixel is corrupted by IN. Dong et al. improved 
ROAD into ROLD as follows. Let Ω𝑁 denote the set of coordinates in a (2𝑁 + 1)-by-(2𝑁 +
1) window centered at (0,0) defined as 
 

Ω𝑁 = {(𝑠, 𝑡)| −𝑁 ≤ 𝑠, 𝑡 ≤ 𝑁}                                        (2) 
 

and let Ω𝑁0 = Ω𝑁(0,0). The logarithmic absolute difference is: 
 

𝐷�𝑠𝑡�𝑦𝑖,𝑗� = log𝑎�𝑦𝑖+𝑠,𝑗+𝑡 − 𝑦𝑖,𝑗� , ∀(𝑠, 𝑡) ∈ Ω𝑁0 .                         (3) 
 

For any 𝑎 > 1, the number 𝐷�𝑠𝑡  is always in (�−∞, 0]�. Keeping it in the dynamic range [0, 1] 
requires truncation and a linear transformation,  
 

𝐷𝑠𝑡�𝑦𝑖,𝑗� ≡ 1 +𝑚𝑎𝑥�log𝑎�𝑦𝑖+𝑠,𝑗+𝑡 − 𝑦𝑖,𝑗� ,−𝑏�/𝑏 ∀(𝑠, 𝑡) ∈ Ω𝑁0 ,              (4) 
 

where a, b are positive constants. All 𝐷𝑠𝑡  values are formed in increasing order, and the 𝑘th 
smallest 𝐷𝑠𝑡  for all (𝑠, 𝑡) ∈ Ω𝑁0  is defined as 𝑅𝑘. The ROLD statistic is thus given by: 
 

ROLD𝑚�𝑦𝑖,𝑗� = ∑ 𝑅𝑘�𝑦𝑖,𝑗�𝑚
𝑘=1 ,                                           (5) 

 
where 2 ≤ 𝑚 ≤ (2𝑁 + 1)2 − 2.  

2.3 Conventional GSR 
GSR was proposed in [19] and shows image restoration in image in-painting, deblurring, and 
compressive sensing recovery. The main concept is to group similar patches and consider the 
relationships among them. The split Bregman iteration (SBI) is used to solve the optimization 
problem and reduce the computational complexity during the dictionary learning step. 
However, because it assumes an additive white Gaussian noise model, GSR cannot be directly 
applied to IN removal.  

To apply GSR for our purpose, we considered the characteristics of IN. Because IN corrupts 
a certain number of pixels and leaves the rest untouched, clean pixels should be unchanged 
after reconstruction. Therefore, we apply a weighting operator to the conventional GSR 
method to only affect the corrupted pixels. A detailed explanation of GSR is found in [19]. 
Briefly, the conventional GSR is formulated as: 

 
𝜶�𝐺 = argmin𝜶𝐺

1
2
‖𝑯𝑫𝐺 ∘ 𝜶𝐺 − 𝒚‖22 + 𝜆‖𝜶𝐺‖0,                           (6) 

 
where 𝑯 is a non-invertible linear degradation operator, 𝑫𝐺 is the GSR dictionary, 𝒚 is the 
observed image, and 𝜆 is the regularization parameter. With 𝜶�𝐺, the reconstructed image can 
be represented as 𝒙� = 𝑫𝐺 ∘ 𝜶�𝐺. Because we use clean pixels to recover the noisy pixels, we 
use the weighting operator 𝑾 to distinguish clean pixels from noisy ones. The weighting 
operator has the same size of 𝒚 and 𝑤𝑖,𝑗  as its elements. The GSR equation for IN removal is 
thus as follows: 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018                               3877 

 

𝜶�𝐺,𝐼𝑁 = argmin𝜶𝐺,𝐼𝑁
1
2
�𝑾⨂�𝑯𝑫𝐺,𝐼𝑁 ∘ 𝜶𝐺,𝐼𝑁 − 𝒚��2

2
+ 𝜆�𝜶𝐺,𝐼𝑁�0,           (7) 

 
where ⨂ denotes the Hadamard (element-wise) product. When a pixel is IN corrupted, the 
corresponding element 𝑤𝑖,𝑗  in 𝑾 is zero because only clean pixels are used to estimate the 
original pixel value. 

3. Proposed method 
In NND-WSR, we use a two-stage IN removal process. For the first stage, we designed an 
NN-based IN detector. We use pixel values and compute the median and ROLD values to 
accurately detect IN. For the second stage, we designed the WSR method to restore the noisy 
pixels. In Fig. 1, we show an overall flowchart that accounts for the proposed method. 
 

 
Fig. 2. A flowchart for the proposed IN removal method 

3.1 Neural-network-based Detector (NND) 
In [14] and [15], IN detectors are proposed based on NNs. In [14], pixel wise median of 
absolute deviation and ROAD values are used to train the NN with a 128 × 128 Lena image 15% 
corrupted with RVIN. In [15], ROAD and ROLD values are fed to the NN. A 128 ×128 test 
image is artificially generated and corrupted with RVIN at a 70% noise density. In the test 
image, one-tenth of the pixels are randomly selected for NN training. For our IN detector, we 
use ROLD, median and pixel values to feed the NN and assign more information. In addition, 
we generate artificial training images, as in [15], to prevent biased results and promote 
generalization. Although 30% noise density applied to our test images is much less than noisy 
density in [15], we choose this value because the noisy image with 30% noise density for 
learning will sufficiently cover the case with 0 to 60% noise density. A neural-network based 
method highly depends on input and label data during the training step. That is why we choose 
30% noise density as median value of the range of 0 to 60%. In addition, we use every pixel in 
a 256 × 256 training image to have enough number of input data to train the network. 
    Before getting into the deeper explanation, we investigate how pixel, median, and ROLD 
values differentiate noisy and noise-free pixels from an image. First, median value is used with 
pixel value to estimate a pixel if their absolute difference is bigger than a certain threshold. 
Second, ROLD finds impulse noise by probablistic attempt in a range between 0 and 1. To 
support the proposed ideas, we show the distribution of noisy and noise-free pixels in the 
normalized pixel, median, and ROLD domains in Fig. 2, where approximately 500 pixels for 
each noisy and noise-free pixels are plotted. We can see that most of noise-free pixels are 
located on the line, while noisy pixels are scattered away from the line. Therefore, we can 
conclude that the noisy pixels can be differentiated using pixel, median, and ROLD value. To 
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solve this task, we apply the neural network-based approach. 
 

 
Fig. 2. Distribution of noisy and noise-free pixels 

 
The detailed procedure is as follows. First, we generate an artificial training image for the 

NN model, as depicted in Fig. 3. We generate a 256×256 image for the original training image. 
In the image, pixels are arranged in 8×8 patches, each of which has a single pixel value 
randomly chosen from within the normal distribution of [0 255]. Then, the image is corrupted 
with RVIN at a 30% noise density. A target training image is generated by subtracting the 
original image from the corrupted image. Non-zero values indicate noisy pixel locations, and 
those pixels are converted to white. In the training process, we calculate the ROLD and 
median values for each pixel and feed them to the NN model, with the noisy pixel location 
map used as the output. In total, we use 65,536 pixels to train the NN model via the feed 
forward neural network (FFNN) method. We design two hidden layers, with four nodes in 
each layer, because the number of layers and nodes does not affect the performance overmuch. 
The structure of our NN is depicted in Fig. 4. 

Once the training is finished, our proposed IN detector uses the ROLD, median, and pixel 
values calculated from the test image. Those values are used as the input for our NN model, 
and the output values determine whether a pixel is IN corrupted or clean. The output 𝑛�𝑥𝑖,𝑗� is 
then used to calculate 𝑤𝑖,𝑗 , as follows: 
 

𝑤𝑖,𝑗 = �
0 𝑖𝑓 𝑛�𝑥𝑖,𝑗�  ≥ 0.5
1 𝑖𝑓 𝑛�𝑥𝑖,𝑗�  < 0.5,

�                                                  (8) 

 
where 𝑤𝑖 ,𝑗 is a weight value in the (𝑖, 𝑗)-th pixel in the weighting operator 𝑾 to be used in the 
second stage.  

In this paper, we train our NN model with the resilient backpropagation (RP) algorithm 
because it has a fast learning capability and the choice of algorithm has little effect on 
performance, as we show in the discussion section. 
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Fig. 3. Training images starting from left:  

(a) original training image, (b) corrupted training image, (c) target training image 
 

 
Fig. 4. Proposed NN structure for training and testing 

3.2 Weighted Couple Group-based Sparse Representation (WSR) 
Equation (7) works well when many useful pixel data are available from uncorrupted pixels. 
However, when the noise density is high, only a few pixel data are available to estimate values 
for the corrupted pixels. The main assumption of the SR-based noise removal method is that 
the noisy image and original image share a dictionary, so the original image can be 
reconstructed using a linear combination of the coefficients. The reconstructed image can be 
estimated after the coefficients are calculated from the noisy image by using the Hadamard 
(element-wise) product value of the corresponding dictionary and the coefficients. The final 
reconstructed image can be obtained using the reconstructed image patches as follows: 
 

𝑿� = �∑ 𝑹𝑖,𝑗𝑇 𝑹𝑖,𝑗𝑖,𝑗 �−1 ∙ ∑ 𝑹𝑖,𝑗𝑇 𝑫𝑮𝜶𝐺,𝐼𝑁,𝑖,𝑗𝑖,𝑗 ,                                     (9) 
 
where 𝑋�  is the reconstructed image and 𝑹𝑖,𝑗  denotes an 𝑛 × N matrix used to extract the 
(𝑖, 𝑗)-th √𝑛  × √𝑛 patch from the image. In most noise removal, that method shows good 
performance. However, it has several shortcomings. First, because it uses only clean pixels to 
recover noisy images, performance suffers when noise density is high and the number of clean 
pixels is small. Second, noise detector accuracy is imperfect, so the detector might provide the 
wrong location for clean pixels, especially in an RVIN-corrupted image. Some noisy pixels 
might thus be regarded as clean pixels and be used for sparse coding. Therefore, coefficients 
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that are inaccurately estimated in the noise removal stage can lead to defects in image 
reconstruction.  

We propose the following method to address those issues. In [20], the authors proposed the 
coupling method to overcome those issues. Inspired by the fact that the reconstructed image 
contains fewer noisy pixels than the original noisy image, we simultaneously code the noisy 
image and the reconstructed image. Our proposed method is formulated as follows:  

�𝛼�𝐺,𝐼𝑁,𝑖,𝑗� = arg min��
1
2
�𝑹𝑖,𝑗𝑾⨂�𝑹𝑖,𝑗𝑿 − 𝑫𝑮𝜶𝐺,𝐼𝑁,𝑖,𝑗��2

2

𝑖,𝑗

+�
1
2
�𝑹𝑖,𝑗(𝑰 −𝑾)⨂�𝑹𝑖,𝑗𝒀 − 𝑫𝑮𝜶𝐺,𝐼𝑁,𝑖,𝑗��2

2

𝑖,𝑗
� 

𝑠. 𝑡. �𝛼𝐺,𝐼𝑁,𝑖,𝑗�0 ≤ 𝐿,                                                                (10) 

 
where Y denotes the estimation of X and I is a matrix of the same size as W whose entries are 
all ones. W is a weighting operator, as in (7). Its elements are ones and zeros defined by (8). 
Equation (10) contains the two parts. The first part selects clean pixels through the element of 
W in (8) to estimate the coefficients using only clean pixels. If noise density becomes bigger, 
however, the number of clean pixels is small, so that it is difficult to correctly estimate the 
coefficients. To solve the difficulty, we add the second part that uses I – W to select noisy 
pixels, and uses reconstructed image Y instead of X because reconstructed image contains less 
noise. Therefore, the reconstructed image compensates for the information missing from the 
noisy image, providing adequate information even if the number of clean pixels is limited by 
high noise density. 

We adopt similar approach in [20]. However, there are two main difference. First, the 
proposed method use group-based sparse representation for denoising, which is different from 
patch-based methods in [20]. The group-based method can take advantage of local sparsity 
and nonlocal similarity in the image. Second, the dictionary learning step is designed with low 
complexity because similar patches share the same dictionary. 

4. Experimental results and discussion 

4.1 IN Detection Results 
To test our NN-based IN detector, we simulated our method alongside six conventional 
methods: ACWM [10], SDROM [11], FIDRM [12], FRINRM [13], IAINS [14], and ANN 
[15]. ACWM and SDROM are median-based IN detectors. FIDRM and FRINRM are 
fuzzy-based techniques. IAINS and ANN are NN-based methods that use different inputs 
compared to the proposed method. For the simulation, we used the parameters for each method 
given in their respective papers. For our method, we used 𝑚 = 4 for ROLD and a 3x3 window 
for the median value and ran the tests in MATLAB.  

Table 1 shows the average comparison between our proposed NND and the conventional 
methods, simulated using 256×256 Barbara, Hill, Peppers, and Lena corrupted by RVIN. 
With noise densities ranging from 20% to 60%, the results are compared using the false 
positive rate (𝛼) and false negative rate (𝛽) as:  
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𝛼 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑒𝑎𝑛 𝑝𝑖𝑥𝑒𝑙𝑠

,     𝛽 =  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑛𝑜𝑖𝑠𝑦 𝑝𝑖𝑥𝑒𝑙𝑠

               (11) 

 
where false positives represent clean pixels classified as noisy and false negatives represent 
noisy pixels classified as clean. If a method has the smallest value for both 𝛼 and 𝛽, it is 
considered to be the best method. Table 1 shows that the 𝛽 values of our proposed method are 
lower than those of the conventional methods. Although the 𝛼 values of our method are 
similar or slightly larger than those of some methods, the balance between 𝛼 and 𝛽 values for 
our method is better than for any other methods. 

Additionally, we show the results for the false alarming ratio (FAR) of each method. FAR is 
defined as FAR(%) =  𝑁𝐼

𝑁𝑇
× 100, where 𝑁𝐼 and 𝑁𝑇 are the number of incorrectly classified 

pixels and total pixels, respectively. All methods in the experiment have decreasing 
performance as the noise density increases. Median filter based methods (ACWM, SDROM) 
have worst performance since their performance depend on a certain threshold value. Fuzzy 
based methods (FIDRM, FRINRM) have better performance than the median filter based 
methods but still the accuracy is lower compared to neural network based methods. Neural 
network based methods (IAINS, ANN, proposed) have good performance in general, and the 
proposed method shows the best performance.  
 

Table 1. Average false positive rate (𝛼), false negative rate (𝛽) and FAR results (FAR unit: %) 

Method 
Noise density 

20% 40% 60% 
𝛼 𝛽 FAR 𝛼 𝛽 FAR 𝛼 𝛽 FAR 

ACWM 0.790 0.481 22.89 0.241 0.430 32.28 0.492 0.380 42.59 
SDROM 0.098 0.511 22.56 0.204 0.447 30.84 0.412 0.377 39.17 
FIDRM 0.061 0.182 9.75 0.115 0.209 16.27 0.257 0.319 30.08 

FRINRM 0.089 0.158 8.47 0.150 0.194 15.28 0.214 0.224 24.48 
IAINS 0.025 0.148 6.16 0.063 0.154 9.99 0.173 0.143 15.51 
ANN 0.032 0.116 5.11 0.056 0.123 8.46 0.122 0.132 12.83 

Proposed 0.028 0.086 4.53 0.049 0.103 7.31 0.111 0.116 11.42 

4.2 IN Removal Results 
After IN detection, our WSR filters the corrupted pixels. In our simulation, we used six images 
to test the IN removal performance. For the noise removal comparison, we used ACWM [10], 
ANN [15], and conventional GSR [19]. Because GSR was originally designed for white 
Gaussian noise, we had to use the weighted GSR given in Eq. 7. Also, conventional GSR is 
designed for deblurring, and does not include noise detection. Therefore, every pixel value in 
the image will change, which means that clean pixels are degraded by this method. The 
weighted GSR performs dictionary learning using only clean pixels and recovers corrupted 
pixels by estimation with the dedicated dictionary and coefficients. 
 

In Table 2 and Table 3, we show the PSNR and SSIM results for the 6 images in Fig. 5 
(Hill, Lena, Boat, Peppers, Cameraman, and Barbara) with different densities of RVIN, with 
the best values marked in bold for easy comparison. Clearly, the proposed method achieves 
PSNR scores that are similar to or better than those of the other three methods. Also, we can 
see that the proposed method achieves better SSIM scores mostly except 60% noise density 
case in Boat and Pepper image. PSNR and SSIM value do not always show the same 
performance tendency. Nevertheless, we can conclude that the proposed method can achieve 
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the best performance overall.  
Figs. 6 and 7 show the results from the different methods for Peppers and Boat under 40% 

noise density. In both figures, ACWM did not suppress enough IN. The ANN and GSR 
methods removed IN overall; however, they also removed the fine edges. Our proposed 
method removed the IN and preserved the fine details, which is especially clear in the writing 
on the boat in Fig. 7.  
 

Table 2. Comparison of reconstruction results in PSNR (Unit: dB) 
Image Noisy ACWM [10] ANN [15] GSR [19] WSR 

Hill 
20% 16.07 30.17 30.65 30.87 31.41 
40% 13.02 23.11 27.81 28.22 29.44 
60% 11.26 17.68 26.24 26.76 27.19 

Lena 
20% 16.21 31.47 32.95 33.38 34.10 
40% 13.24 24.86 29.92 30.32 32.31 
60% 11.47 17.14 28.01 28.52 29.14 

Boat 
20% 16.31 31.57 30.78 31.14 32.71 
40% 13.29 24.98 27.89 28.14 30.68 
60% 11.53 17.59 25.63 26.40 27.41 

Pepper 
20% 15.88 30.89 31.18 31.90 32.17 
40% 12.95 23.78 27.68 28.41 29.11 
60% 11.19 15.45 25.55 26.32 26.06 

Cameraman 
20% 15.35 29.64 30.47 31.16 31.31 
40% 12.38 22.15 27.12 27.97 28.46 
60% 10.64 16.83 25.30 26.11 25.93 

Barbara 
20% 15.83 30.69 31.78 31.09 32.53 
40% 12.82 23.46 28.19 27.35 29.28 
60% 11.04 15.32 25.89 24.92 26.75 

 
Table 3. Comparison of reconstruction results in SSIM 

Image Noisy ACWM [10] ANN [15] GSR [19] WSR 

Hill 
20% 0.205 0.789 0.851 0.865 0.889 
40% 0.095 0.478 0.746 0.808 0.865 
60% 0.050 0.196 0.589 0.761 0.763 

Lena 
20% 0.231 0.707 0.832 0.909 0.934 
40% 0.121 0.318 0.734 0.835 0.912 
60% 0.065 0.135 0.556 0.796 0.851 

Boat 
20% 0.260 0.812 0.864 0.873 0.899 
40% 0.133 0.449 0.747 0.851 0.853 
60% 0.074 0.157 0.549 0.808 0.773 

Pepper 
20% 0.246 0.791 0.820 0.863 0.879 
40% 0.130 0.413 0.749 0.812 0.849 
60% 0.073 0.163 0.541 0.727 0.709 

Cameraman 20% 0.224 0.744 0.848 0.869 0.873 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018                               3883 

40% 0.117 0.387 0.715 0.805 0.835 
60% 0.071 0.151 0.572 0.722 0.764 

Barbara 
20% 0.288 0.810 0.881 0.827 0.891 
40% 0.148 0.496 0.592 0.797 0.846 
60% 0.082 0.215 0.609 0.706 0.815 

 

 
Fig. 5. Test images from left to right: Hill, Lena, Boat, Peppers, Cameraman, and Barbara 

 

 
Fig. 6. Peppers from left to right: ACWM, ANN, GSR, and WSR is applied 

 

 
Fig. 7. Boat from left to right: ACWM, ANN, GSR, and WSR is applied 

4.3 Discussion: Convolutional Neural Network 
In this research, we developed an NN-based IN detector. In Section 3, we claimed that 
changing the neural network algorithm would not provide a significant performance increase. 
In this section, we substantiate that claim by changing our conventional NN into a 
deep-learning-based NN. 

Compared to conventional NNs, convolutional neural networks (CNNs) are a type of 
deep-learning-based NN with a very deep architecture; they’ve been found to be effective in 
many digital image processes [21]. As modern GPUs have become more powerful, CNNs 
have become popular in many image processing areas, such as segmentation [22], object 
detection [23], object recognition [24], and noise correction [25]. In this section, we compare a 
simple NN with a deep-learning-based CNN to show that adopting a deep network is 
unnecessary for IN detection. 

As far as we know, this is the first attempt to use a CNN for IN detection. Therefore, we had 
to modify some deep-learning-based image processing techniques for our purpose. We 
investigated many methods and concluded that deep-learning-based denoising methods are a 
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good choice for the first step. Thus, we modified a deep-learning-based image denoising 
method for IN detection.  

We had many deep-learning-based image denoising methods from which to choose. Most 
of them deal with white Gaussian noise via a residual learning–based algorithm that uses a 
residual image instead of a noise-free image. Because the residual image looks similar to our 
noise location map, we selected the DnCNN residual-learning-based method, which was 
published in 2017 [25]. Its main purpose is to remove white Gaussian noise from images. It 
trains a CNN using a noisy image as input and a residual image as output. This method showed 
state-of-the-art performance compared to other techniques. To adapt the DnCNN for IN 
detection, we first used a noisy image as input. Then we trained the CNN using a noise 
location map image, labeling real noise-pixel locations as the output. When we applied an 
IN-corrupted test image to this network, the algorithm produced images with the noise-pixel 
locations labeled as output. The image has pixel values between 0 and 1, and values higher 
than or equal to the threshold value of 0.5 are deemed to be noisy. Finally, we verified whether 
those pixels accurately matched the locations of the noisy pixels. 

For the simulation, we used randomly chosen VOC 2012 images [26] for training and 
testing. For the training, we used 100 images, and for the testing we used the 12 images shown 
in Fig. 8. We added IN to the images at specific noise density values, and those were converted 
by the ROLD method for input to the network. Table 4 shows the DnCNN noise detection 
result by noise density. The FAR result increases with the noise density. However, if we 
compare the DnCNN results with the results in Table 1, we can see that the results are similar 
to those from the conventional NN-based methods. If we apply multiple source input that 
combines pixel values, median values, and ROLD as we did in our method, the DnCNN would 
yield better results. However, considering the effort involved in redesigning the deep learning 
network and cost required to train the network, we conclude that a simple NN-based IN 
detector is adequately efficient and effective.  
 

 
Fig. 8.  Test images randomly chosen from the VOC 12 image set: Simply labeled as Image A, B … L 

from the top left corner to the bottom right corner. 
 

Table 4. FAR results for DnCNN IN detection with different noise densities (Unit: %) 
 Noise density 

10% 20% 30% 40% 50% 
IMAGE A 3.18 6.18 9.05 11.96 15.17 
IMAGE B 2.13 4.02 5.72 7.52 9.70 
IMAGE C 2.32 4.47 6.71 9.03 11.65 
IMAGE D 1.94 3.53 5.15 6.57 8.56 
IMAGE E 2.79 5.45 7.89 10.53 13.61 
IMAGE F 3.25 5.99 8.59 11.36 14.34 
IMAGE G 2.65 4.99 7.52 9.71 12.50 
IMAGE H 2.04 3.93 5.85 7.94 10.51 
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IMAGE I 2.38 4.55 6.77 8.77 11.25 
IMAGE J 2.37 4.55 6.83 9.00 11.64 
IMAGE K 3.59 6.88 10.14 13.07 16.32 
IMAGE L 2.61 4.84 7.03 9.42 12.08 
AVERAGE 2.60 4.95 7.27 9.57 12.28 

4.4 Running time 
For our experiments, we use Intel Core i7-6700 at 3.4GHz, 16GB memory and MATLAB 

2016. The proposed IN detector involves the computation of median and ROLD. However, the 
time required to compute median and ROLD is negligible compared to the rest of the system. 
Also, time complexity to apply the neural-network for testing is negligible since it has very 
small number of nodes and layers. However, when it comes to the noise removal step, we 
admit that the proposed WSR is very complex and takes about 8 mins. It is because the 
proposed method is implemented on MATLAB and the code is not fully optimized yet. It is 
main disadvantage of the proposed method, compared to the other methods.  

6. Conclusion 
In this paper, we proposed NND-WSR for IN removal. To remove RVIN from images, we 

used a two-stage method, with IN detection as the first stage and filtering as the second stage. 
In the first stage, we proposed an IN detector based on an NN using ROLD, median, and pixel 
values. In the second stage, we proposed the WSR method to remove IN. The WSR overcomes 
the limitations of GSR and compensate for the insufficient information in images with high 
noise density by applying a weighted coupling method. Experiment results show the proposed 
noise detector has the best detection performance in general. In addition, the proposed WSR 
shows the best results regarding PSNR and SSIM in most cases. We also analyzed NN-based 
and deep-learning-based noise detectors in the discussion section. FAR results show that 
deep-learning-based noise detectors give similar or worse performance than NN-based noise 
detector. In future work, we will investigate an IN removal method robust against noise 
density.  
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