• 제목/요약/키워드: weight to power ratio

검색결과 298건 처리시간 0.03초

Maximum Torque Control of IPMSM Drive with ALM-FNN Controller (ALM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어)

  • Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • 제55권3호
    • /
    • pp.110-114
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. In this paper maximum torque control of IPMSM drive using artificial intelligent(AI) controller is proposed. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AI controller. This paper is proposed speed control of IPMSM using adaptive learning mechanism fuzzy neural network(ALM-FNN) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the experimental results to verify the effectiveness of AI controller.

Maximum Torque Control of IPMSM with Adaptive Learning Fuzzy-Neural Network (적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Lee, Jung-Ho;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.309-314
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current md voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using adaptive teaming fuzzy neural network and artificial neural network. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper proposes speed control of IPMSM using adaptive teaming fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive teaming fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive teaming fuzzy neural network and artificial neural network.

  • PDF

A Study on the Fire Properties of MOF Insulation Cover and Field Condition of 22.9kV Class Power Receiving System (22.9kV 수변전설비의 실태 및 계기용변성기 절연커버의 출화특성에 관한 연구)

  • Choi Chung-Seog;Kim Dong-Woo;Han Woon-Ki;Lee Ki-Yeon
    • Journal of the Korean Society of Safety
    • /
    • 제20권2호
    • /
    • pp.56-60
    • /
    • 2005
  • We studied fire properties of MOF(Metering Out Fit) insulation cover and field condition of 22.9kV power receiving system. $49.5\%$ of formal equipments were installed indoors, whereas $40.8\%$ of informal equipments were installed as H-type. Insulation treatment was not done at a $22.4\%$ ratio of main line($27.7\%$ of transformer, $70.2\%$ of COS, $10.4\%$ of MOF). Fire pattern analysis showed that the fire started at the secondary part of OC wire. In the result of DTA(Differential Thermal Analysis), normal cover showed exothermic reactions at $310^{\circ}C,\;399^{\circ}C\;and\;510^{\circ}C$ (endothermic reactions at $382^{\circ}C$). Whereas damaged cover showed exothermic reactions at $412^{\circ}C$(endothermic reactions at $389^{\circ}C$). In the result of TGA(Thermo Gravimetric Analysis), the thermal weight change of normal cover was similar compared to damaged cover. In the result of FT-IR analysis, normal cover showed absorption peaks at $3,024cm^{-l},\;2,921cm^{-l},\;1,600cm^{-1},\;1,492cm^{-1},\;1,451cm^{-1},\;1,154cm^{-l},\;1,027cm^{-1},\;906cm^{-1}$. Whereas, in case of tracked cover, the absorption peaks that were shown in normal cover disappeared and different absorption peak was shown at $966cm^{-1}$.

The Effect of Paroxetine on Symptom Improvement and Change of Heart Rate Variability of the Patients with Panic Disorder (Paroxetine이 공황장애 환자의 증상 개선과 HRV 양상 변화에 미치는 영향)

  • Ahn, Joo-Yeun;Yu, Bum-Hee
    • Anxiety and mood
    • /
    • 제2권2호
    • /
    • pp.101-107
    • /
    • 2006
  • Object : Since autonomic nerve system dysfunction was known as the mechanism of panic disorder, many researchers used heart rate variability (HRV) as means of measuring autonomic nerve function of patients with panic disorder. We aimed to examine the effect of paroxetine medication for 3 months on symptom improvement and change of heart rate variability of the patients with panic disorder. Methods : The subjects were patients with panic disorder who visited the psychiatric outpatient clinic of Samsung Medical Center in Seoul. We included panic disorder patients who were aged from 20 to 50 and in normal BMI range (from 18 to 30) to minimize the effect of age and weight on HRV data. We excluded the patients with EKG abnormalities, hypertension or other major psychiatric disorders. They took 20-40 mg paroxetine medication a day for 3 months. Alprazolam was used only during the first month to control the acute panic symptoms and was tapered off after that. We measured the acute panic inventory (API), Hamilton rating scale for anxiety and depression (HAM-A & HAM-D), Spielberger state-trait anxiety inventory (STAIS, STAIT), and Beck depression inventory (BDI) in order to assess clinical improvement of the patients. And we measured time and frequency domain HRV in the resting, standing and cognitive stress states to assess the change of HRV. All measurements were done before and after paroxetine treatment. Result : After paroxetine medication, patients showed significant improvement in all psychiatric scales. In time domain of HRV, standard deviations of all R-R intervals (SDNN) were significantly increased in all states. In frequency domain of HRV, the ratio of high frequency to total power (HF/TP) in the standing state was significantly increased. Conclusion : After 3 months paroxetine medication, panic disorder patients showed significant clinical improvement and change in HRV data such as SDNN in all states and HF/TP ratio in the standing state. This result suggests that paroxetine medication is effective for the improvement of autonomic nerve system dysfunction in panic disorder patients.

  • PDF

Study on volume reduction of radioactive perlite thermal insulation waste by heat treatment with potassium carbonate

  • Chou, Yi-Sin;Singh, Bhupendra;Chen, Yong-Song;Yen, Shi-Chern
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.220-225
    • /
    • 2022
  • Perlite is one of the major constituents of the radioactive thermal insulation waste (RTIW) originating from nuclear power plants and, for proper waste management, a significant reduction in its volume is required prior to disposal. In this work, the volume reduction of perlite is studied by high-temperature treatment method with using K2CO3 as a flux. The perlite is ground with 0-30 wt% K2CO3, and differential thermal analysis/thermogravimetric analysis is used to monitor the glass transition temperature (Tg) and weight loss. The Tg varied between ~772.2 and 837.1 ℃ with the minima at ~643.5 ℃ with the addition of ~10 wt% K2CO3. It is observed that compared to the pure perlite the volume reduction ratio (VRR) increases with the addition of K2CO3. The VRR of 11.20 is observed with 5 wt% K2CO3 at 700 ℃, as compared to VRR of 5.56 without K2CO3 at 700 ℃. The X-ray photoelectron spectroscopy and scanning electron microscopy are used to characterize perlite samples heat-treated without/with 5 wt% K2CO3 at 700 ℃. Moreover, the atomic absorption spectroscopy indicates that the proposed heat-treatment procedure is able to completely retain the radionuclides present in the perlite RTIW.

Dynamic Characteristics and Instability of Submerged Plain Journal Bearings in accordance with the Cavitation Model (공동현상 모델에 따른 침수형 평면 저널베어링의 동특성 및 회전 안정성에 대한 연구)

  • Moonho Choi
    • Tribology and Lubricants
    • /
    • 제39권4호
    • /
    • pp.139-147
    • /
    • 2023
  • Cavitation phenomena observed during the operation of a submerged plain journal bearing (PJB) can affect bearing performance parameters such as dynamic coefficients, whirl frequency ratio, and critical mass. This study presents numerical solutions of the Reynolds equation for steadily and dynamically loaded submerged PJBs with half-Sommerfeld (HS), Reynolds, and Jakobsson-Floberg-Olsson (JFO) cavitation models when the supply pressure is larger or equal to the cavitation pressure. The loads at various eccentricity ratios are identical; however, the attitude angle is approximately 6% smaller when the eccentricity ratio is between 0.2 and 0.7 and the JFO model is used, compared to that when the Reynolds model is used. Dynamic coefficients obtained with the HS and Reynolds model show good agreement with each other, except for kxz, which is sensitive to changes in the force normal to the rotor weight, and is attributed to the difference in the attitude angle obtained with each cavitation model. Stiffness coefficients are determined using the pressure distribution in the film, and therefore, when the JFO model is used, the direct stiffness coefficients are affected and show opposite signs for most eccentricity ratios. The mass-conservative JFO model can predict at least a 30% smaller critical mass compared to that using the HS and Reynolds models. Thus, the instability analysis results can change based on the cavitation model used in a submerged PJB. The results of this research indicate that the JFO model should be used when designing a rotor system supported by submerged PJBs.

Intelligent Phase Plane Switching Control of Pneumatic Artificial Muscle Manipulators with Magneto-Rheological Brake

  • Thanh, Tu Diep Cong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1983-1989
    • /
    • 2005
  • Industrial robots are powerful, extremely accurate multi-jointed systems, but they are heavy and highly rigid because of their mechanical structure and motorization. Therefore, sharing the robot working space with its environment is problematic. A novel pneumatic artificial muscle actuator (PAM actuator) has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. Its main advantages are high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks. The PAM is undoubtedly the most promising artificial muscle for the actuation of new types of industrial robots such as Rubber Actuator and PAM manipulators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In addition, the nonlinearities in the PAM manipulator still limit the controllability. Therefore, it is not easy to realize motion with high accuracy and high speed and with respect to various external inertia loads in order to realize a human-friendly therapy robot To overcome these problems a novel controller, which harmonizes a phase plane switching control method with conventional PID controller and the adaptabilities of neural network, is newly proposed. In order to realize satisfactory control performance a variable damper - Magneto-Rheological Brake (MRB) is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control using neural network brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control using neural network and without regard for the changes of external inertia loads.

  • PDF

Development of Strain-gauge-type Rotational Tool Dynamometer and Verification of 3-axis Static Load (스트레인게이지 타입 회전형 공구동력계 개발과 3축 정적 하중 검증)

  • Lee, Dong-Seop;Kim, In-Su;Lee, Se-Han;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제18권9호
    • /
    • pp.72-80
    • /
    • 2019
  • In this task, the tool dynamometer design and manufacture, and the Ansys S/W structural analysis program for tool attachment that satisfies the cutting force measurement requirements of the tool dynamometer system are used to determine the cutting force generated by metal cutting using 3-axis static structural analysis and the LabVIEW system. The cutting power in a cutting process using a milling tool for processing metals provides useful information for understanding the processing, optimization, tool status monitoring, and tool design. Thus, various methods of measuring cutting power have been proposed. The device consists of a strain-gauge-based sensor fitted to a new design force sensing element, which is then placed in a force reduction. The force-sensing element is designed as a symmetrical cross beam with four arms of a rectangular parallel line. Furthermore, data duplication is eliminated by the appropriate setting the strain gauge attachment position and the construction of a suitable Wheatstone full-bridge circuit. This device is intended for use with rotating spindles such as milling tools. Verification and machining tests were performed to determine the static and dynamic characteristics of the tool dynamometer. The verification tests were performed by analyzing the difference between strain data measured by weight and that derived by theoretical calculations. Processing test was performed by attaching a tool dynamometer to the MCT to analyze data generated by the measuring equipment during machining. To maintain high productivity and precision, the system monitors and suppresses process disturbances such as chatter vibration, imbalances, overload, collision, forced vibration due to tool failure, and excessive tool wear; additionally, a tool dynamometer with a high signal-to-noise ratio is provided.

Effects of Green Tea Powder on Noodle Properties (가루녹차 첨가가 제면 특성에 미치는 영향)

  • 박장현;김영옥;국용인;조덕봉;최형국
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제32권7호
    • /
    • pp.1021-1025
    • /
    • 2003
  • The study was to investigate the quality of wet noodle added with the powder green tea. The wet noodles were prepared to the ratio of 1, 2, 3, 5, 7.5 and 10% (w/w) of the powder green tea based on a flour weight. The initial pasting temperature in an amylograph was increased as the increase of the powder green tea, while peak and final viscosity as the increase decreased. The weight and volume of cooked noodles were decreased, and turbidity of soup was increased with the addition of the powder green tea. L and a values of wet noodles were decreased with the addition of the powder green tea, and b value was increased. Texture profile analysis of cooked noodle showed a increase of hardness, cohesiveness, springiness, chewiness up to 2% powder green tea, but decreased from 3% power green tea. However, adhesiveness decreased as the increase of the powder green tea. From the sensory evaluation, the wet noodles included 1% powder green tea were similarly evaluated as the noodle used whole wheat flour.

Nanostructure and Thermal Effects Dependent on the Film Thickness in Poly(3-hexylthiophene):Phenyl-C61-butyric Acid Methyl Ester(P3HT:PCBM) Films Fabricated by 1,2-Dichlorobenzene Solvent for Organic Photovoltaics (1,2-Dichlorobenzene Solvent를 이용한 고분자 유기태양전지에서 박막 두께에 따른 나노 구조와 열처리 효과)

  • Lee, Hyun Hwi;Kim, Hyo Jung
    • Textile Coloration and Finishing
    • /
    • 제26권4호
    • /
    • pp.347-352
    • /
    • 2014
  • Film thickness dependent nanostructure evolution by a post annealing was investigated in poly (3-hexylthiophene):phenyl-C61-butyric acid methyl ester(P3HT:PCBM) films for organic solar cells which were fabricated by dichlorobenzene(DCB) solvent. In case of a 70nm thin film, the thermal annealing process affected to slight increment of the P3HT crystals in the surface region. On the other hand, large number of small sized P3HT crystals near the surface region was formed in the 200nm thick film. The solar cell devices showed the 3% power conversion efficiency(PCE) in 1:0.65 and 1:1 ratio(by weight) of P3HT and PCBM in 70nm and 200nm thickness conditions, respectively. Despite to the similar PCE, the short circuit current Jsc was different in 70nm and 200nm devices, which was related to the different nanostructure of P3HT:PCBM after thermal annealing.