• Title/Summary/Keyword: wedge shape

검색결과 140건 처리시간 0.022초

지르칼로이-4 튜브 및 지지부의 접촉조건과 미끄럼 상태의 천이 (Contact Condition of Zircaloy-4 Tube and Support and Transition of Slip Regime)

  • 김형규;강흥석;윤경호;송기남
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.81-88
    • /
    • 2001
  • To study the influence of the shape of contacting bodies (especially the end profile) on slip regime, wear test is conducted in the case of the contact between tube and support. Two different end profiles of the support are used such as truncated wedge and rounded punch. During the test, 10, 30 and 50 N are applied as normal force and slip displacement varies between 10-200 $\mu\textrm{m}$. The tube and the support specimens are made of Zircaloy-4 and a specially designed wear tester is used. Tests are carried out in air at room temperature. Wear on the tube is examined by measuring microscope. Partial and gross slip regimes are classified from the observed wear shape. Surface roughness tester is also used to measure the wear depth and contour, from which wear volume is evaluated. The transition from partial to gross slip is also investigated by investigating the considerable increase of wear volume. From the result, the boundary between the partial and the gross slip is newly determined in the conventional fretting map for the present specific contact configuration. Since the transition is related with the amount of energy dissipation from the contact surface so is wear, it is regarded that wear can be restrained by designing a proper shape of support.

  • PDF

암반 사면의 파괴 예측을 위한 불연속면 분포 특성 분석 (Analysis of Discontinuity Distribution Property to Predict Rock Slope Failure)

  • 윤운상;김정환;배기훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.147-152
    • /
    • 1999
  • Distribution of fracture system is an important factor to analyse instability of jointed rock slope. In the most case of rock slopes, joint distribution properties are related to potential, shape, size and locality of slope failure. The purpose of this paper is to present an application of fracture characterization related to rock slope failure. Fracture data used in this study are collected by scanline survey. Two aspects of fracture characterization for rock slope are handled in this study First, In order to determine the potential and shape of slope failure, trace length of joints is considered as the weighting factor about collected orientation data. Second, Relationship between trace length and spacing is analysed to estimate failure location and size. The distribution of fracture system is directly influenced on wedge failure. It is effective to analyse the orientation of fractures by using weighting factors associated with the trace length of fractures rather than to analyse only that of fractures. It gives a conclusion that the wedge failure occurred along the peak of fracture density(or intensity) cycles.

  • PDF

유전율 이방성이 음인 액정을 이용한 이중 도메인 FFS 모드의 전기광학 특성 (Electro-Optic Characteristics of the Dual Domain Fringe-Field Switching(FFS) Mode using the Liquid Crystal with Negative Dielectric Anisotropy)

  • 김향율;고재완;노정동;서대식;이승희
    • 한국전기전자재료학회논문지
    • /
    • 제15권8호
    • /
    • pp.720-725
    • /
    • 2002
  • The fringe-field switching (FFS) mode was known to exhibit both a wide viewing angle and high transmittance, especially when using the liquid crystal (LC) with negative dielectric anisotropy. In the device, the LC director rotates almost in-plane. However, in the bright state the device shows bluish and yellowish color along parallel and perpendicular to the LC director at off-normal directions since the LC director rotates only in one direction. Such a problem was greatly improved using a wedge shape of only pixel electrodes. In this way two different field directions exist in a pixel, enabling the LC director to rotate in two opposite directions. Consequently, owing to dual domain effect when using the LC with negative dielectric anisotropy, the viewing angle characteristics are greatly improved.

2차원 초공동 유동의 중력과 자유표면 효과에 대한 수치해석 (A Numerical Analysis of Gravity and Free Surface Effects on a Two-Dimensional Supercavitating Flow)

  • 김형태;이현배
    • 대한조선학회논문집
    • /
    • 제51권5호
    • /
    • pp.435-449
    • /
    • 2014
  • The effects of the gravity field and the free surface on the cavity shape and the drag are investigated through a numerical analysis for the steady supercavitating flow past a simple two-dimensional body underneath the free surface. The continuity and the RANS equations are numerically solved for an incompressible fluid using a $k-{\epsilon}$ turbulence model and a mixture fluid model has been applied for calculating the multiphase flow of air, water and vapor using the method of volume of fluid and the Schnerr-Sauer cavitation model. Numerical solutions have been obtained for the supercavitating flow about a two-dimensional $30^{\circ}$ wedge in wide range of depths of submergence and inflow velocities. The results are presented for the cavity shape, especially the length and the width, and the drag of the wedge in comparison with those of the case for the infinite fluid flow neglecting the gravity and the free surface. The influences of the gravity field and the free surface on the aforementioned quantities are discussed. The length and the width of the supercavity are reduced and the centerline of the cavity rises toward the free surface due to the effects of the gravity field and the free surface. The drag coefficient of the wedge, however, is about the same except for shallow depths of submergence. As the supercavitating wedge is approaching very close to the free surface, it is found the length and the width of a cavity are shorten even though the cavitation number is reduced. Also the present result suggests that, under the influence of the gravity field and the free surface, the length of the supercavity for a certain cavitation number varies and moreover is proportional to the inverse of the submergence depth Froude number.

모형실험 및 수치 시뮬레이션을 이용한 쌍동형 준설선의 선형 설계에 관한 연구 (Hull Form Design of Catamaran Type Dredging Vessel Using Model Test and Numerical Simulation)

  • 이영길;손충렬;정우철;강대선;정광열;김도정
    • 한국해양공학회지
    • /
    • 제20권2호
    • /
    • pp.66-71
    • /
    • 2006
  • To develope a hull form of catamaran type dredging vessel, resistance characteristics is investigated to find the interaction effect of waves between the two hulls. Re fore body shape is simplified as two dimensional wedge shape for the maintenance and disassembly/assembly. Based on MAC method, numerical simulation is performed in staggered variable mesh system. Re conservation form of Euler equations and continuity equation are applied as governing equations. To verify numerical methods, the wive patterns along the hull surface are compared with the results of model tests. This study is performed as varying wedge shape of the bow and the distance between the two hulls. The wave interaction between two hulls are observed to investigate the relation the resistance performance and the flow characteristics. Suitable hull form and distance between two hulls are discussed.

Ritz법을 이용한 쐐기형 봉의 진동 해석 (Vibration Analysis of Wedge Type Bar by Ritz Method)

  • 박석주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.877-882
    • /
    • 2005
  • This paper discusses the lateral vibration of a bar which has its tip free. The uniform bar has a solution by summation of some simple exponential functions But if its shape is not uniform, its solution could be by Bessel's function, or mathematical solution could not be existed. Enen if the solution of Bessel's function exists. as Bessel function is a series function. we must got the solution by numerical method Hereby the author Proposes the ununiform beam solution of the matrix method by Ritz's method. and Proposes a new deflection shape function.

Effect of anisotropic diffusion coefficient on the evolution of the interface void in copper metallization for integrated circuit

  • Choy, J.H.
    • 한국결정성장학회지
    • /
    • 제14권2호
    • /
    • pp.58-62
    • /
    • 2004
  • The shape evolution of the interface void of copper metallization for intergrated circuits under electromigration stress is modeled. A 2-dimensional finite-difference numerical method is employed for computing time evolution of the void shape driven by surface diffusion, and the electrostatic problem is solved by boundary element method. When the diffusion coefficient is isotropic, the numerical results agree well with the known case of wedge-shape void evolution. The numerical results for the anisotropic diffusion coefficient show that the initially circular void evolves to become a fatal slitlike shape when the electron wind force is large, while the shape becomes non-fatal and circular as the electron wind force decreases. The results indicate that the open circuit failure caused by slit-like void shape is far less probable to be observed for copper metallization under a normal electromigration stress condition.

압연 공정에서 꼬임 발생 메커니즘에 대한 기초 연구 (Fundamental Study on Mechanism of Strip Pinching in Rolling)

  • 이창우;신기현;홍완기;정동택
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.127-132
    • /
    • 2004
  • It is very important to find out causes of strip pinching for the high quality of products and fer the stable operation of rolling system. We have examined the strip pinching from three points of view to find out the causes of strip pinching in rolling system: strip shape, rolling operation conditions, and behavior of strip. Wedge, off center, and difference of rolling force through CMD(Cross machine direction) are found to possibly provide major initial causes of strip pinching. Generally strip pinching occurred in the tail of strip. Thus, computer simulations by using a FEM code were also carried out to find out the initial mechanism of strip pinching depending upon the force and geometric boundary conditions at the time of strip tail rolling. The strong compression force effect due to the sudden release of strip tail from the work roll and non-uniform strip tail shape (ex. Fish tail) across the CMD were found to provide possible major causes of strip pinching.

A Case of Successful Surgical Repair for Pectus Arcuatum Using Chondrosternoplasty

  • Kim, Sang Yoon;Park, Samina;Kim, Eung Rae;Park, In Kyu;Kim, Young Tae;Kang, Chang Hyun
    • Journal of Chest Surgery
    • /
    • 제49권3호
    • /
    • pp.214-217
    • /
    • 2016
  • Pectus arcuatum is a rare complex chest wall deformity. A 31-year-old female presented with a severely protruding upper sternum combined with a concave lower sternum. We planned a modified Ravitch-type operation. Through vertical mid-sternal incision, chondrectomies were performed from the second to fifth costal cartilages, saving the perichondrium. Horizontal osteotomy was performed in a wedge shape on the most protruding point, and followed by an additional partial osteotomy at the most concaved point. The harvested wedge-shape bone fragments were minced and re-implanted to the latter osteotomy site. The osteotomized sternum was fixed with multiple wirings. With chondrosternoplasty, a complex chest wall deformity can be corrected successfully.

사상 압연 공정에서 꼬임 발생 메커니즘에 대한 기초 연구 (Fundamental Study on Pinching Mechanism in Hot Strip Mill)

  • 신기현;권순오;이창우;안영세;정동택;홍완기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1091-1096
    • /
    • 2003
  • It is very important to find out causes of strip pinching for the high quality of products and for the stable operation of hot roiling system. We have examined the strip pinching from three points of view to find out the causes of strip pinching in hot rolling system: strip shape, rolling operation conditions, and behavior of strip. Wedge, off center, and difference of rolling force through CMD are found to possibly provide major initial causes of strip pinching. Generally strip pinching occurred in the tail of strip. Thus, computer simulations by using a FEM code were also carried out to find out the initial mechanism of strip pinching depending upon the force and geometric boundary conditions at the time of strip tail rolling. The strong compression force effect due to the sudden release of strip tail from the work roll and non-uniform strip tail shape (ex. Tongue tail) across the CMD were found to provide possible major causes of strip pinching.

  • PDF