• Title/Summary/Keyword: web-shear capacity

Search Result 124, Processing Time 0.03 seconds

Experimental Verification of Resistance-Demand Approach for Shear of HSC Beams

  • El-Sayed, Ahmed K.;Shuraim, Ahmed B.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.513-525
    • /
    • 2016
  • The resistance-demand approach has emerged as an effective approach for determining the shear capacity of reinforced concrete beams. This approach is based on the fact that both the shear resistance and shear demand are correlated with flexural tensile strain from compatibility and equilibrium requirements. The basic shear strength, under a given loading is determined from the intersection of the demand and resistance curves. This paper verifies the applicability of resistance-demand procedure for predicting the shear capacity of high strength concrete beams without web reinforcement. A total of 18 beams were constructed and tested in four-point bending up to failure. The test variables included the longitudinal reinforcement ratio, the shear span to depth ratio, and the beam depth. The shear capacity of the beams was predicted using the proposed procedure and compared with the experimental values. The results of the comparison showed good prediction capability and can be useful to design practice.

Elastic Shear Buckling of Curved Web Panels (강곡선 1형보 복부판의 탄성 전단좌굴)

  • 김재석;김종헌;강영종;한택희
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • The horizontally curved bridges have been used to connect bridges and roads. Until 1960s, they had been constructed with straight girders, called 'kinked girder bridges', which requires much cost and time-consuming construction of substructure. In case of using curved girders, practiced later, they would have many advantages such as reduction in the total construction cost and time, and ability to make aesthetic bridges. In designing plate girder bridges, it is necessary to determine the spacings between vertical stiffeners and the allowable shear stresses based on shear buckling capacity because it plays a key role in preventing the premature local shear buckling. Compared with the straight web, the critical shear buckling stresses of curved web panels vary with both aspect ratio and curvature coefficient. For designing curved web panels, a simplified formula and shear buckling coefficients were proposed by parametric models with F.E.M in this study.

Utilizing CFRP and steel plates for repair of damaged RC beams with circular web openings

  • Fayyadh, Moatasem M.;Abed, Mohammed J.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.49-61
    • /
    • 2022
  • This paper presents an experimental investigation into the effectiveness of using carbon fibre reinforced polymer (CFRP) and steel plates to repair damaged reinforced concrete (RC) beams with circular web openings at shear zones. It highlights the effectiveness of externally bonded CFRP and steel plates in repairing damaged RC beams by analysing the repaired beams'load capacity, deflection, strain, and failure mode. For the experiment, a total of five beams were used, with one solid beam as a control beam and the other four beams having an opening near the shear zone. Two beams with openings were repaired using inclined and vertical configuration CFRP plates, and the other two were repaired using inclined and vertical configuration steel plates. The results confirm the effectiveness of CFRP and steel plates for repairing damaged RC beams with circular openings. The CFRP and steel plates significantly increase ultimate capacity and reduce deflection under the openings. The inclined configuration of both CFRP and steel plates was more effective than the vertical configuration. Using an inclined configuration not only increases the ultimate capacity of the beams but also changes the mode of failure from shear to flexural.

Mechanical characteristics of hollow shear connectors under direct shear force

  • Uenaka, Kojiro;Higashiyama, Hiroshi
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.467-480
    • /
    • 2015
  • The steel-concrete composite decks have high fatigue durability and deformability in comparison with ordinary RC slabs. Withal, the steel-concrete composite deck is mostly heavier than the RC slabs. We have proposed herein a new type of steel-concrete composite deck which is lighter than the typical steel-concrete composite decks. This can be achieved by arranging hollow sectional members as shear connectors, namely, half-pipe or channel shear connectors. The present study aims to experimentally investigate mechanical characteristics of the half-pipe shear connectors under the direct shear force. The shear bond capacity and deformability of the half-pipe shear connectors are strongly affected by the thickness-to-diameter ratio. Additionally, the shear strengths of the hollow shear connectors (i.e. the half-pipe and the channel shear connectors) are compared. Furthermore, shear capacities of the hollow shear connectors equivalent to headed stud connectors are also discussed.

Experimental and theoretical research on mechanical behavior of innovative composite beams

  • Zhu, Gang;Yang, Yong;Xue, Jianyang;Nie, Jianguo
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.313-333
    • /
    • 2013
  • The web-encased steel-concrete composite (WESCC) beam is a new developed steel-concrete composite beam. Experiments of six simply supported WESCC beam specimens were conducted. The effects of the shear-span ratio and steel section type were all investigated on the static behaviors such as failure modes, failure mechanism and bearing capacity. The experimental results denoted that all specimens failed in bending mode and the degree of combination between the bottom armor plate of steel shape and concrete were very well without any evident slippage, which demonstrated that the function of bottom armor plate and web were fully exerted in the WESCC beams. It could be concluded the WESCC beams have high stiffness, high load carrying capacity and advanced ductility. The design methods are proposed which mainly consist the bearing capacity calculation of bending and flexural rigidity. The calculation results of the bearing capacity and deflection which take the shear deflection into account are in agreement with the experimental results. The design methods are useful for design and application of the innovative composite beams.

Effect of Reinforcement for Web Opening on Shear Strength of Reinforced Concrete Deep Beams (철근콘크리트 깊은 보의 전단 내력에 대한 개구부 보강 효과)

  • Lee, Jong-Kweon;Choi, Yun-Cheul;Lee, Yong-Taeg
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.699-708
    • /
    • 2007
  • Reinforced concrete deep beams are general structural members used as transfer-girder, pile cap, foundation wall and so on. They have a complex stess formation. Generally, failure mechanisms differ from either continuous deep beams or simple supported deep beams. In continuous deep beams, a negative moment is occurred over intermediate support and the location of maximum moment coincide with high shear force. Therefore, failure usually occurs at this region. While on the other hand, in simple supported deep beam, the region of high shear coincides with the region of low moment. The web opening of deep beams for accepting a facility makes shear behaviors of deep beams more complex and gives rise to an expansion of crack around the opening and a decline of shear capacity of deep beams. Therefore, Engineers must determine a delicate reinforcement method to control a crack and increase a shear capacity. The purpose of this report is a computation of an effective reinforcement method through non-linear finite element method by means of adopting various reinforcement method as variables and a computation of shear capacity formula taking an effectiveness of reinforcement into consideration.

Experimental study on shear capacity of SRC joints with different arrangement and sizes of cross-shaped steel in column

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.267-287
    • /
    • 2016
  • The seismic performance of the ordinary steel reinforced concrete (SRC) columns has no significant improvement compared to the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type shaped steel were put forward on this background, and they were named as enlarging cross-shaped steel and diagonal cross-shaped steel for short. The seismic behavior and carrying capacity of new-type SRC columns have been researched theoretically and experimentally, while the shear behavior remains unclear when the new-type columns are joined onto SRC beams. This paper presents an experimental study to investigate the shear capacity of new-type SRC joints. For this purpose, four new-type and one ordinary SRC joints under low reversed cyclic loading were tested, and the failure patterns, load-displacement hysteretic curves, joint shear deformation and steel strain were also observed. The ultimate shear force of joint specimens was calculated according to the beam-end counterforce, and effects of steel shape, load angel and structural measures on shear capacity of joints were analyzed. The test results indicate that: (1) the new-type SRC joints display shear failure pattern and has higher shear capacity than the ordinary one; (2) the oblique specimens have good bearing capacity if designed reasonably; and (3) the two proposed construction measures have little effect on the shear capacity of SRC joints embedded with diagonal cross-shaped steel. Based on the mechanism observed from the test, the formulas for calculating ultimate shear capacity considering the main factors (steel web, stirrup and axial compression ratio) were derived, and the calculated results agreed well with the experimental and simulated data.

Design of composite plate girders under shear loading

  • Shanmugam, N.E.;Baskar, K.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2006
  • Experiments have been carried out on six composite and two plain steel plate girders under shear loading to understand the elastic and inelastic behaviour of such girders. The failure mechanism assumed and used to develop design equations is normally based on the failure patterns observed in the experiments. Therefore, different types of cracks and failure patterns observed in the experiments are reviewed briefly first. Based on the observed failure patterns, a design method to predict the ultimate shear capacity of composite plate girders is proposed in this paper. The values of ultimate shear capacity obtained using the proposed design method are compared with the corresponding experimental values and it is found that the proposed method is able to predict the shear capacity accurately.

Ductility Capacity of Shear-Dominated Steel Plate Walls (전단지배 강판벽의 연성능력)

  • Park, Hong Gun;Choi, In Rak;Jeon , Sang Woo;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.457-468
    • /
    • 2006
  • An experimental study was performed to investigate the maximum energy dissipation and the ductility capacity of shear-dominated steel plate walls with thin web plates. Three specimens of three-story plate walls with thin web plates were tested. The parameters for the test specimens were the aspect ratio of the web plate and the shear strength of the column. A concentrically braced frame and a moment-resisting frme were a also tested for comparison. The steel plate walls exhibited much better ductility and energy dissipation capacity than the concentrically braced frame and the moment-resisting frame. The results showed that unlike other structural systems, the sh as well as strength, and can therefore be used as an effective earthquake-resisting system. A method of predicting the energy dissipation capacity of a steel plate wall was proposed.

Evaluation of Shear Performance of Reinforced Concrete Beams for Varying Reinforcement Details of Web Opening (유공부 보강상세에 따른 철근콘크리트 유공 보의 전단 성능 평가)

  • Kim, Min-Jun;Lee, Bum-Sik;Kim, Dong-Whan;Kim, Hyeong-Gook;Lee, Yong-Jun;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.19-26
    • /
    • 2018
  • This study evaluates the shear performance of reinforced concrete members with web opening reinforcement. A total of 4 reinforced concrete members with or without openings were cast then tested. The main variables investigated were with or without of web openings and with or without of web opening reinforcement, respectively. The proposed web opening reinforcement was a rectangle and rhombus-shaped spiral considering of construct ability. Test result showed that the proposed web reinforcement had improved shear capacity and ductility of the specimens. It was found that the web opening reinforcement proposed in this study had a positive effect on the shear strength and crack control of RC beams with web openings. In addition, it was confirmed that the analytical results by the current design codes underestimates the test results of the specimens with the proposed web opening reinforcement.