• Title/Summary/Keyword: weathering

Search Result 1,161, Processing Time 0.033 seconds

Effect of geological characteristics on differential weathering of low-graded metasedimentary rock slopes (저변성퇴적암 사면에서 지질특성이 차별풍화에 미치는 영향)

  • Jeong, Hae-Geun;Seo, Yong-Seok;Ihm, Myung-Hyeok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.375-385
    • /
    • 2013
  • This study evaluates correlation between petrographic characteristics and weathering grade of low-graded metasedimentary rocks mainly consisting of phyllite. Weathering grade of rock material was determined based on the results of geological survey. The Schmidt hammer test was carried out to obtain estimates of strength of rock materials. Point counting and microscopic observation were also conducted to analyze mineral composition and to measure spacing of foliation for 9 rock specimens. As a result of microscopic analysis, as the weathering grade was lower, the quartz was found more in quantity, consequently making rock stronger against weathering process. On the other side, lower weathering grade of rock resulted in less content of mica which is weak against weathering process. In addition, the rock materials with closer foliation spacing are found to be weaker in strength and have higher weathering grade.

Outcomes and Tasks of the Research on Weathering pitsin Korea - The Case of Tafoni and Gnamma - (한국의 풍화혈 연구 성과와 과제 - 타포니·나마를 중심으로 -)

  • Park, Ji-Sun;Kwon, Dong-Hi
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.37-50
    • /
    • 2013
  • This study analyzes results of published studies of weathering pits in Korea focusing on tafoni and gnamma and it suggests new types of weathering pits and next subjects through the analysis. 34 papers, published between 1978 and February 2012, have been analyzed and the following are details of the analysis. In terms of the study results, weathering pits are commonly developed on coarse-grained rocks such as granite, but also found on various rocks. Multiple reasons including mechanical, chemical and salt weathering create weathering pits and they are closely related to the geological structure. Weathering pits are classified as tafoni and gnamma but the forms have not been verified. In the future, quantitative analysis must be conducted find the factors influencing creation, forms and development of weathering pits.

A Study on the Strength Degradation of Weathered Granite Soil by Freezing and Thawing (동결융해에 의한 화강풍화토의 강도저하에 관한 연구)

  • Kim, Yong-Soo;Jung, Soo-Jung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • The property of weathered soil cannot but have a possibility of having a limit when its precise approaching due to the various weathering environment, and the peculiarity of its conduct affected by the weathering degree and effect factors. Especially most domestic or international researches are concentrated on the sedimentary soil, trying to analyze the mechanical behavior of weathered soil from the viewpoint of sedimentary soil. Therefore, it's difficult to judge if those results meet the actual conduct of weathered soil. This study suggested a way of weathering degree changing experiment as an early stage in an experiment of artificially changing weathering degree. In order to find out the property of strength change by the change of weathering degree, indoor mechanical experiment was made using soil sample after freezing and thawing. Under the weathering degree, characteristic change is watched by country rock and region of weathered granite soil.

  • PDF

Weathering Characteristics of Granite by Freeze-Thaw Cyclic Test (동결-융해 시험에 의한 화강암의 풍화 특성 연구)

  • Park, Yeon-Jun;You, Kwang-Ho;Yang, Kwang-Yong;Woo, Ik;Park, Chan;Song, Won-Kyung
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.215-224
    • /
    • 2003
  • Weathering in nature was simulated by freeze-thaw cyclic test which represents mechanical weathering. Measured physical properties were elastic wave velocities, absorption rate, volume change and weight change. Uniaxial compression tests were also conducted before and after the weathering tests. The change in weight and volume of the specimens were not clearly related to the weathering process, but P, S wave velocities, uniaxial compression strength and Young's modulus were clearly decreased as weathering progresses. Test result can be used for the assessment of long-term stability of rock slopes.

Current Researches on The Weathering of Wood (목재의 기상열화에 관한 최근의 연구 동향)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.483-494
    • /
    • 2017
  • This was reviewed on the characteristics (changes of color, microscopic structures, and chemical degradations) that appears on wood surface, when wood is exposed to outdoors and weathering testing methods applicable for assessment of wood weatherability in outside environment through literature reviews.

Morphology of Halloysite Particles and Aggregates in the Weathering of Anorthosite (회장암 풍화과정에서 생성되는 할로이사이트 입자 및 집합체의 형태)

  • 정기영;김영호
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.64-70
    • /
    • 1996
  • Early weathering products of anorthosite were investigated by using scanning electron microscopy in order to trace the development of halloysite particles and aggregates. Tiny short tubes or spheres precipitate on the plagioclase surface in the initial stage of weathering and form the compact globular aggregates. With continued growth, several globules are coalesced into wrinkled halloysite aggregates, and short tubes or spheres in globules grow into long tubes forming sheaf-like aggregates. Particle shape of halloysite varies with changing supersaturation degree of weathering solution, and determines the morphology of halloysite aggregates.

  • PDF

Characteristics of the rocks and its weathering phenomena of the Gameunsa 3-story and Naweonri 5-story Pagodas located at the Kyeongju city, Korea (감은사지 3층 석탑(동탑)과 나원리 5층 석탑의 암석과 풍화현상의 특징에 대한 연구)

  • Lee, Sang Hun
    • Journal of Conservation Science
    • /
    • v.5 no.1 s.5
    • /
    • pp.20-40
    • /
    • 1996
  • For obtaining the basic data for establishing plan on the conservation of the Gameunsa 3-story and Naweonri 5-story Pagodas located at the Kyeongju city, the characteristics of the rock and weathering phenomena have been investigated. The former consists of quartz-rlch granite containing small amount of biotite, and the latter of alkali granite with abundant perthite, These rock phases are nearly identical to the marginal phase of medium-grained hornblende-biotite granodiorite and alkali granite respectively, which are distributed around the Kyeongju city. The rock weathering may be governed mainly by chemical weathering of feldspar following physical segregation of quartz grains and pervasive moss. The feldspar easily dissolve In the solution with pH<7 to precipitate clay mineral such as a kaolinite as a secondary phase on the feldspar surface. However, the chemical weathering of feldspar may continue when the surface is washed by the rain according to removal of the reprecipitated phase. On forwarding, the weathering may be greatly Influenced by the acid rain. Exfoliation and weathering along igneous lineation resulting in exfoliating along the structural line are the characteristic weathering phenomena. Also the secondary small cracks are irregularly developed on the rocks due to different strain on places by the overall structural unbalance of the pagodas. Along these cracks, the rain water intrudes deeply into the rocks and weathering occurs intensively compared to other parts. Weathering may be artificially promoted by the grinding or sculpturing when the pagodas were made. Because it may influence on the physical properties of the rocks as well as destruct the surface of the feldspar crystals, the major constituents of the rocks, it results in providing the environment of easy chemical weathering along time. For conservation, the pagodas must be structurally balanced by compacting the soil basement and supplementing rocks on the destroyed part. On the exfoliated part it is better not to be artifically treated as using cementing material. But the cracks may be filled up by cementing material to avoid the intrusion of acidic water. To supplement the rocks on the destroyed part, it may be better to use similar rock phases from identical biotite granite and alkali granite masses around the Kyeongju city.

  • PDF

Variations of Mechanical Properties of Hallasan Trachyte with respect to the Degree of Weathering (풍화진행에 따른 한라산조면암의 역학적 특성변화)

  • Cho, Tae-Chin;Lee, Sang-Bae;Hwang, Taik-Jean;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.287-303
    • /
    • 2009
  • Rock mass in Baekrokdam at the summit of Hallasan in Jeju island is composed of two volcanic rock types: Baekrokdam trachybasalt at the eastern region and Hallasan trachyte at the western region. On-going rockfall and subsequent collapse of Baekrokdam wall rock are closely linked to the weathering of trachyte distributed in the western region of Baekrokdam. Samples of Hallasan trachyte showing different weathering grades had been collected and the polarizing microscopic observation, X-ray diffraction analysis and analysis for chemical weathering had been conducted. Formation of secondary minerals, especially clay minerals, by chemical weathering has not been identified, but the change of chemical weathering indices indicated that chemical weathering process had been proceeded to the degree for increasing and decreasing the contents of some chemical components. Changes in physical and mechanical rock properties due to weathering has also been examined. Artificial weathering test of freezing-thawing reveals that the process of crack initiation and propagation deteriorated the mechanical characteristics of Hallasan trachyte and $D_B$ = 1.5 or porosity = $20{\sim}21%$ would be the ultimate limiting value induced by the mechanical weathering processes.

Rendezvous Mission to Apophis: IV. Investigation of the internal structure - A lesson from an analogical asteroid Itokawa

  • Jin, Sunho;Kim, Yaeji;Jo, Hangbin;Yang, Hongu;Kwon, Yuna G.;Ishiguro, Masateru;Jeong, Minsup;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.58.1-59
    • /
    • 2021
  • Exploration of asteroids' internal structure is essential for understanding their evolutional history. It also provides a fundamental information about the history of coalescence and collision of the solar system. Among several models of the internal structures, the rubble-pile model, confirmed by the near-Earth asteroid (25143) Itokawa by Hayabusa mission [1], is now widely regarded as the most common to asteroids with size ranging from 200 m to 10 km [2]. On the contrary, monolithic and core-mantle structures are also possible for small asteroids [3]. It is, however, still challenging to look through the interior of a target object using remote-sensing devices. In this presentation, we introduce our ongoing research conducted at Seoul National and propose an idea to infer the internal structure of Apophis using available instruments. Itokawa's research provides an important benchmark for Apophis exploration because both asteroids have similar size and composition [4][5]. We have conducted research on Itokawa's evolution in terms of collision and space weathering. Space weathering is the surface alteration process caused by solar wind implantation and micrometeorite bombardment [6]. Meanwhile, resurfacing via a collision acts as a counter-process of space weathering by exposing fresh materials under the matured layer and lower the overall degree of space weathering. Therefore, the balance of these two processes determine the space weathering degrees of the asteroid. We focus on the impact evidence on the boulder surface and found that space weathering progresses in only 100-10,000 years and modifies the surface optical properties (Jin & Ishiguro, KAS 2020 Fall Meeting). It is important to note that the timescale is significantly shorter than the Itokawa's age, suggesting that the asteroid can be totally processed by space weathering. Accordingly, our result triggers a further discussion about why Itokawa indicates a moderately fresh spectrum (Sq-type denotes less matured than S-type). For example, Itokawa's smooth terrains show a weaker degree of space weathering than other S-type asteroids [7]. We conjecture that the global seismic shaking caused by collisions with >1 mm-sized interplanetary dust particles induces granular convection, which hinders the progression of space weathering [8]. Note that the efficiency of seismic wave propagation is strongly dependent on the internal structure of the asteroid. Finally, we consider possible approaches to investigate Apophis's internal structure. The first idea is studying the space weathering age, as conducted for Itokawa. If Apophis indicates a younger age, the internal structure would have more voids [9]. In addition, the 2029 close encounter with Earth provides a rare natural opportunity to witness the contrast between before and after the event. If the asteroid exhibits a slight change in shape and space weathering degree, one can determine the physical structure of the internal materials (e.g., rubble-pile monolithic, thick or thin regolith layer, the cohesion of the materials). We will also consider a possible science using a seismometer.

  • PDF

Proposed Prediction of Corrosion Loss for Weathering Steel Cladding in KIHO region using Multi-variable Analysis (기호지방 건축용 내후성강 외장재의 다변량 해석을 통한 부식량 예측식 제안)

  • Chung, Kyung Soo;Lee, Jae Sung;Chung, Jin An;Lee, Sung Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.591-599
    • /
    • 2008
  • Weathering steel has been widely used in bridges and cladding materials due to its superior atmospheric corrosion resistance. Actually, weathering steel has often been used in Korea as cladding material. However, the performance of the weathering steel in claddings has not been fully monitored. We conducted a field study on the performance of weathering steels and measured the quantity of corrosion loss on the weathering steel claddings in Korea. Based on the measured corrosion loss and weather (environmental) data, the equation to predict corrosion loss of weathering steels was proposed by using environmental factors in KIHO region in Korea. The proposed equation predicted very well the real corrosion losses of KIHO region.