• Title/Summary/Keyword: weather-forecaster

Search Result 7, Processing Time 0.022 seconds

Development of the Wind Power Forecasting System, KIER Forecaster (풍력발전 예보시스템 KIER Forecaster의 개발)

  • Kim Hyun-Goo;Lee Yung-Seop;Jang Mun-Seok;Kyong Nam-Ho
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.37-43
    • /
    • 2006
  • In this paper, the first forecasting system of wind power generation, KIER Forecaster is presented. KIER Forecaster has been constructed based on statistical models and was trained with wind speed data observed at Gosan Weather Station nearby Walryong Site. Due to short period of measurements at Walryong Site for training the model, Gosan wind data were substituted and transplanted to Walryong Site by using Measure-Correlate-Predict(MCP) technique. The results of One to Three-hour advanced forecasting models are consistent with the measurement at Walryong site. In particular, the multiple regression model by classification of wind speed pattern, which has been developed in this work, shows the best performance comparing with neural network and auto-regressive models.

  • PDF

Development of the Wind Power Forecasting System, KIER Forecaster (풍력발전 예보시스템 KIER Forecaster의 개발)

  • Kim, Hyun-Goo;Jang, Mun-Seok;Kyong, Nam-Ho;Lee, Yung-Seop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.323-324
    • /
    • 2006
  • In the present paper a forecasting system of wind power generation for Walryong Site, Jejudo is presented, which has been developed and evaluated as a first step toward establishing Korea Forecasting Model of Wind Power Generation. The forecasting model, KIER forecaster is constructed based on statistical models and is trained with wind speed data observed at Gosan Weather Station nearby Walryong Si to. Due to short period of measurements at Walryong Site for training statistical model, Gosan wind data were substituted and transplanted to Walryong Site by using Measure-Correlate-Predict technique. Three-hour advanced forecast ins shows good agreement with the measurement at Walryong site with the correlation factor 0.88 and MAE(mean absolute error) 15% under.

  • PDF

Weather-Forecasters' Perception about the Nature of Science (기상 정보 전달자의 과학의 본성에 대한 인식 연구)

  • Park, Gye-Hyun;Han, Shin;Jeong, Jin-Woo;Park, Tae-Yoon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.8 no.2
    • /
    • pp.114-127
    • /
    • 2015
  • The nature of science has been recognized in a great deal in the field of science education. However, Most of the papers were going to study of teachers and students. to improve their recognition of the nature of science. The current study describes and analyzes Weather-Forecaster's understandings of the nature of science (NOS). Data used in this study were collected from 3 Weather-Forecasters using an semi-structured interview. The results of this study were as follows. First, the participants recognized that science has explored the phenomenon of unknown facts or observations and they were careful inductive perspective. Second, participants felt that science and society are associated with each other. Also, all participants were judged science verification process is required. Third, they are showed that science and technology interact closely with social relationships.

Effect on the PM10 Concentration by Wind Velocity and Wind Direction (풍속과 풍향이 미세먼지농도에 미치는 영향)

  • Chae, Hee-Jeong
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.3
    • /
    • pp.37-54
    • /
    • 2009
  • The study has analyzed impacts and intensity of weather that affect $PM_{10}$ concentration based on PM10 forecast conducted by the city of Seoul in order to identify ways to improve the accuracy of PM10 forecast. Variables that influence $PM_{10}$ concentration include not only velocity and direction of the wind and rainfalls, but also those including secondary particulate matter, which were identified to greatly influence the concentration in complicated manner as well. In addition, same variables were found to have different impacts depending on seasons and conditions of other variables. The study found out that improving accuracy of $PM_{10}$ concentration forecast face some limits as it is greatly influenced by the weather. As an estimation, this study assumed that basic research units and artificially estimated pollutant emissions, study on mechanisms of secondary particulate matter productions, observatory compliment, and enhanced forecaster's expertise are needed for better forecast.

Validation of an Anthracnose Forecaster to Schedule Fungicide Spraying for Pepper

  • Ahn, Mun-Il;Kang, Wee-Soo;Park, Eun-Woo;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.46-51
    • /
    • 2008
  • With the goal of achieving better integrated pest management for hot pepper, a disease-forecasting system was compared to a conventional disease-control method. Experimental field plots were established at Asan, Chungnam, in 2005 to 2006, and hourly temperature and leaf wetness were measured and used as model inputs. One treatment group received applications of a protective fungicide, dithianon, every 7 days, whereas another received a curative fungicide, dimethomorph, when the model-determined infection risk (IR) exceeded a value of 3. In the unsprayed plot, fruits showed 18.9% (2005) and 14.0% (2006) anthracnose infection. Fruits sprayed with dithianon at 7-day intervals had 4.7% (2005) and 15.4% (2006) infection. The receiving model-advised sprays of dimethomorph had 9.4% (2005) and 10.9% (2006) anthracnose infection. Differences in the anthracnose levels between the conventional and model-advised treatments were not statistically significant. The efficacy of 10 (2005) and 8 (2006) applications of calendar-based sprays was same as that of three (2005 and 2006) sprays based on the disease-forecast system. In addition, we found much higher the IRs with the leaf wetness sensor from the field plots comparing without leaf wetness sensor from the weather station at Asan within 10km away. Since the wetness-periods were critical to forecast anthracnose in the model, the measurement of wetness-period in commercial fields must be refined to improve the anthracnose-forecast model.

Predicting the Greenhouse Air Humidity Using Artificial Neural Network Model Based on Principal Components Analysis (PCA에 기반을 둔 인공신경회로망을 이용한 온실의 습도 예측)

  • Owolabi, Abdulhameed B.;Lee, Jong W;Jayasekara, Shanika N.;Lee, Hyun W.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.93-99
    • /
    • 2017
  • A model was developed using Artificial Neural Networks (ANNs) based on Principal Component Analysis (PCA), to accurately predict the air humidity inside an experimental greenhouse located in Daegu (latitude $35.53^{\circ}N$, longitude $128.36^{\circ}E$, and altitude 48 m), South Korea. The weather parameters, air temperature, relative humidity, solar radiation, and carbon dioxide inside and outside the greenhouse were monitored and measured by mounted sensors. Through the PCA of the data samples, three main components were used as the input data, and the measured inside humidity was used as the output data for the ALYUDA forecaster software of the ANN model. The Nash-Sutcliff Model Efficiency Coefficient (NSE) was used to analyze the difference between the experimental and the simulated results, in order to determine the predictive power of the ANN software. The results obtained revealed the variables that affect the inside air humidity through a sensitivity analysis graph. The measured humidity agreed well with the predicted humidity, which signifies that the model has a very high accuracy and can be used for predictions based on the computed $R^2$ and NSE values for the training and validation samples.

Analysis of Changes in the Views on Nature of Science (NOS) Appeared in Pre-Service Elementary School Teachers' Science Journals (초등 예비교사의 과학 일기에 나타난 과학의 본성에 대한 인식 변화 유형 분석)

  • Sungman Lim;Jung-Yun Shin
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.1
    • /
    • pp.30-42
    • /
    • 2023
  • The purpose of this study is to quantitatively and qualitatively analyze the science journals written by pre-service elementary school teachers, and to categorize the view on the nature of science and the process of their change. For this purpose, 112 science journals written by 13 pre-service elementary school teachers were analyzed. The frequency of each area was analyzed using the research framework of the four areas of the nature of science, and the pattern of change in perspective on the nature of science was inductively derived and classified using the VNOS-C test analysis framework. As a result, The nature of scientific thinking, nature of scientific knowledge, nature of STS, and nature of scientific inquiry were described in relatively similar proportions, but among them, The nature of scientific thinking appeared in the largest percentage, and the nature of scientific inquiry was described in the smallest percentage. The variability of scientific knowledge, the importance of empirical evidence, and the positive and negative effects of science were especially intensively addressed. In addition, the changing aspects of pre-service elementary school teachers' perspectives on the nature of science could be categorized into 'naive view maintenance type', 'informed view maintenance type', 'regression type', 'development type', and 'mixed type'. The element of 'the empirical nature of scientific knowledge' showed various patterns of change depending on the students, and most of the students maintained a informed view on the tentativeness of scientific knowledge for several sessions.