• Title/Summary/Keyword: weather conditions

Search Result 1,771, Processing Time 0.031 seconds

Big Data Analysis of the Correlation between Average Daily Temperature and Batting Power (빅데이터를 활용한 타자의 장타력과 일일 평균 기온 간의 상관관계 분석)

  • Kim, Semin;Shin, Chwacheol
    • Journal of Digital Convergence
    • /
    • v.18 no.8
    • /
    • pp.225-230
    • /
    • 2020
  • The KBO League is held over a long period of time due to the large number of games. Also, Korea has a diverse and distinct climate. Therefore, this study analyzed the relationship between the daily average temperature and the record of batting power such as home runs, triples, doubles, number of bases, batting percentage, and net batting percentage, and a third baseball record was defined. For this study, the correlation between the daily average temperature data and the batter who entered the standard at-bat in the KBO League in 2019 was analyzed through the SEMMA method. From the results of this study, it was found that the average daily temperature had an effect on a batter's hitting power. In particular, it was found that a batter's hitting power decreased on the day of temperatures recorded between 20.0 degrees and 24.9 degrees, and it was discussed that this may have been related to the physical condition of the pitcher the batter was facing. Therefore, it can be expected that players, coaching staff, and the front desk can use them in the game through conditions outside the game. In addition, it is expected that it will be a more useful analysis model by analyzing the records of pitching, base running, and defense as well as subsequent batting records.

Research for Calibration and Correction of Multi-Spectral Aerial Photographing System(PKNU 3) (다중분광 항공촬영 시스템(PKNU 3) 검정 및 보정에 관한 연구)

  • Lee, Eun Kyung;Choi, Chul Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.143-154
    • /
    • 2004
  • The researchers, who seek geological and environmental information, depend on the remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, the adverse weather conditions and the expensive equipment can restrict that the researcher can collect their data anywhere and any time. To allow for better flexibility, we have developed a compact, a multi-spectral automatic Aerial photographic system(PKNU 2). This system's Multi-spectral camera can catch the visible(RGB) and infrared(NIR) bands($3032{\times}2008$ pixels) image. Visible and infrared bands images were obtained from each camera respectively and produced Color-infrared composite images to be analyzed in the purpose of the environment monitor but that was not very good data. Moreover, it has a demerit that the stereoscopic overlap area is not satisfied with 60% due to the 12s storage time of each data, while it was possible that PKNU 2 system photographed photos of great capacity. Therefore, we have been developing the advanced PKNU 2(PKNU 3) that consists of color-infrared spectral camera can photograph the visible and near infrared bands data using one sensor at once, thermal infrared camera, two of 40 G computers to store images, and MPEG board to compress and transfer data to the computer at the real time and can attach and detach itself to a helicopter. Verification and calibration of each sensor(REDLAKE MS 4000, Raytheon IRPro) were conducted before we took the aerial photographs for obtaining more valuable data. Corrections for the spectral characteristics and radial lens distortions of sensor were carried out.

  • PDF

A Study on Behavior Characteristics of Precast Coping Part under Axial Load (축하중을 받는 프리캐스트 코핑부의 거동 특성 연구)

  • Won, Deok-Hee;Lee, Dong-Jun;Kim, Seung-Jun;Kang, Young-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • Recently, bridge construction technology has made great progress from development of high performance materials and new bridge types. However, most technology are based on methods of cast-in-place and material cost saving. The method of cast-in-place concrete causes environmental damages and costumer complaints. Especially, under bad weather conditions, the construction can not proceed. To overcome these disadvantages, new construction methods were developed to reduce construction time. These methods are called precast method. Most prefabricated methods have been applied to superstructure constructions of bridges, but very minutely applied to substructure constructions. The most important agendas on precast method are light weight and transportability of the precasted members, because very strict transporting specifications exist for road transportation of the precasted members. For example, the weight and length of coping members may be larger than the available transporting vehicles. Although column is constructed by precast method to save construction time, if coping member is constructed by cast-in-place method, then the column construction time reduction becomes meaningless. Therefore, in this study, a new precast coping member and a connecting system of column-coping member are proposed. The proposed method is verified by analyzing their ultimate performance through analysis and experimental study.

The Analysis of Mesoscale Circulations Characteristics Caused by the Evaporation-Efficiency of Water Retention Pavement (보수성 도로 포장재의 증발효율 변화에 의한 중규모 순환장 특성 분석)

  • Kim, In-Su;Lee, Soon-Hwan;Kim, Hae-Dong;Suh, Young-Chan
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.709-720
    • /
    • 2009
  • Field observation and numerical experiments were conducted to understand the impact of water retention pavement on the surface heat budget and on the regional circulation. The numerical model applied in this study is the atmospheric dynamic model Local Circulation Model (LCM) with two dimensional grid system, and a field observation was carried out under the clear sky and calm conditions of the weather on 19 July 2007. In the field observation, the maximum value of surface temperature on pavement covered with water retention material reached the $41.2^{\circ}C$ at 1430 LST and the values was lower for $16.1^{\circ}C$ than that of asphalt without the material. The Case BET03 assumed to be 0.3 for the surface evaporation efficiency was in good agreement with the observation and its sensible and latent heat fluxes were numerically estimated to be 229 and 227 $W/m^2$, respectively. Results of the numerical experiments demonstrated that the water retention pavement tends to induce the increase of latent heat flux associated with the lower surface temperature and mixing height during the daytime. Discontinuity of latent heat caused by the water retention pavement also tends to promote the development of mesoscale circulation called as land-land breeze or country breeze.

The Treatment of Volatile Organic Compounds Using a Pilot-Scale Biofilter (Pilot 규모의 바이오필터를 이용한 휘발성유기화합물질 제거)

  • Son, Hyun-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.245-252
    • /
    • 2004
  • Two biofilter tests were conducted under different operating conditions. Test # 1 was performed to treat VOCs generated from a paint booth. The second test was performed to treat VOCs generated from chemical manufacturing processes. The volume of biofilter media was 4.3 $m^3$. For the test # 1, the biofilter was operated for 30 days with 99.9% reduction ratio. Range of temperature of each stage of the biofilter media was measured between $34^{\circ}C$ and $73^{\circ}C$. All the temperatures of stages reduced gradually after the initial dramatic increase. For the test # 2, the biofilter experiment was conducted for 14 days. In this case, the biofilter was installed outdoor and the experiment was performed during wintertime. Therefore, temperature management for the biofilter was needed. Seven-centimeter thick fiberglass insulation and $150^{\circ}C$ steam heating were used to overcome the outside freezing cold weather during test # 2. Temperature of stage # 5 was measured the highest and that of stage # 1 was the lowest. More acclimation time and test period was needed to determine the maximum loading rate.

The Frost Heaving Susceptibility Evaluation of Subgrade Soils Using Laboratory Freezing System (실내 동상시스템을 이용한 노상토의 동상민감성 평가)

  • Shin, Eun Chul;Ryu, Byung Hyun;Park, Jeong Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.2
    • /
    • pp.13-23
    • /
    • 2013
  • The Korean Peninsula is considered as a seasonal frozen area that is thawed in the spring and frozen in the winter. The influence of fines of the frost susceptibility of subgrade soils were established by laboratory freezing tests simulating closely the thermal conditions in the field. During the winter season, the climate is heavily influenced by the cold and dry continental high pressure. Because of siberian air mass, the temperature of January is $-6{\sim}-7^{\circ}C$ on average. This chilly weather generate the frost heaving by freezing the moisture of soil and damage potential of the geotechnical structure. In the freezing soil, the ice lenses increase the freeze portion of soil by absorbing the ground water with capillary action. However, the capillary characteristics differ from the sort of soil on the state of freezing condition. In this study, ten soil samples are prepared. The basic physical property tests were performed by following the Korean Industrial Standard and the soil specimens were classified by the Unified Soil Classification System (USCS). These classified soils are used to perform the laboratory opened systems freezing test in order to determine the frost heaving characteristics of soils such as unfrozen water content, heaving amount, and freezing depth.

Development of S-63 electronic nautical system using mobile (모바일을 활용한 S-63 전자해도 시스템 개발)

  • Kim, Gyu-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.205-208
    • /
    • 2015
  • Large vessels are currently operating by using an ECDIS, a system enabling automatic navigation and checking marine conditions. In the past, the ECDIS was used for vessels but in these days, it has been used as a method for collecting and verifying marine information, etc. from land by using a computer, instead of taking a boat out. The ECDIS on sale is generally used by companies which operate marine workers. However, this system has caused inconvenience to marine workers, in terms of tasks, services, or operations. Marine workers move out to the sea after checking the status of the system at the office. Due to the weather such as waves and winds, marine devices are not often found on the relevant coordinates. In such a case, the workers onerously need to come back to the land and track the marine devices again. In order to solve such a problem, this thesis purposes to develop a system which can check the locations of marine devices and verify a marine chart even on the sea by using a mobile. The proposed system can integrate and support a variety of protocols of relevant devices in the system itself and check data via mobile through the data transmission and streaming functions.

  • PDF

A Study on the Risk Assessment of River Crossing Pipeline in Urban Area (도심지 하천매설배관의 위험성 평가에 관한 연구)

  • Park, Woo-Il;Yoo, Chul-Hee;Shin, Dong-Il;Kim, Tae-Ok;Lee, Hyo-Ryeol
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.22-28
    • /
    • 2020
  • In this study, quantitative risk assessment was carried out for city gas high-pressure pipelines crossing through urban rivers. The risk assessment was performed based on actual city gas properties, traffic volume and population and weather data in the worst case scenario conditions. The results confirmed that the social and individual risks were located in conditionally acceptable areas. This can be judged to be safer considering that the risk mitigation effect of protecting the pipes or installing them in the protective structure at the time of the construction of the river buried pipe is not reflected in the result of the risk assessment. Also, SAFETI v8.22 was used to analyze the effects of wind speed and pasquil stability on the accident damage and dispersion distances caused by radiation. As a result of the risk assessment, the safety of the pipelines has been secured to date, but suggests ways to improve safety by preventing unexpected accidents including river bed changes through periodic inspections and monitoring.

Effect of Insect Pollinators for Chinese jujube (Zizyphus jujuba var. inermis (Bunge) Rehder) in Rain shelter house (대추 비가림하우스 내 화분매개곤충의 수분 특성 및 효과)

  • Oh, Ha Kyung;Lee, Jong Won;Kim, Chung Woo;Lee, Kyeong Hee;Lee, Seong Kyun;Kim, Sang Hee;Yoon, Hyung Joo;Lee, Kyeong Yong
    • Korean journal of applied entomology
    • /
    • v.56 no.4
    • /
    • pp.365-370
    • /
    • 2017
  • The flowering season of jujube (Zizyphus jujuba var. inermis (Bunge) Rehder) is overlaps with the rainy season and the abnormal weather conditions in Korea, thereby affecting pollination, fertilization, and fruit setting. We studied the pollinating activities of Apis mellifera L. and Bombus terrestris L. in rain shelter houses and their effects on fruit setting, with the ultimate aim of stabilizing fruit setting in Z. jujuba. A. mellifera and B. terrestirs were used for pollination in jujube orchard in the rain shelter house for approximately 55 days from June 1, 2016, to July 25, 2016. The peak time of the rate of outgoing and incoming A. mellifera was recorded in the afternoon. However, the diurnal activity of B. terrestris was constant between 09:30 and 17:30 h. The rate of jujube fruit set on current shoots by A. mellifera and B. terrestirs was 10.2 and 8.9%, whereas that in plots with no pollinators was 5.5%. Therefore, using pollinator in the rain shelter house in jujube orchard is effective in promoting jujube fruit setting.

Influences of Meteorological Conditions of Harvest Time on Water-Soluble Vitamin Contents and Quality Attributes of Oriental Melon (수확기 기상환경이 참외의 수용성비타민 함량 및 품질에 미치는 영향)

  • Kim, Hye-Suk;Jung, Ji-Yun;Kim, Hye-Kyung;Ku, Kang-Mo;Suh, Jun-Kyu;Park, You-Mie;Kang, Young-Hwa
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.290-296
    • /
    • 2011
  • In our study, oriental melon (Cucumis melo L. var makuwa Makino) was harvested in Seongju at major harvest time from June to August with the intervals of one month in 2009. In order to elucidate the effect of meteorological condition of harvest time on fruit quality and water-soluble vitamin contents of oriental melon, quality attributes including weight, hardness, and sugar were examined and water-soluble vitamin contents such as folic acid and vitamin C were analyzed. Fruit quality factors and water-soluble vitamin contents were the highest in June when rainfall was low and solar radiation was high. Meanwhile, both of them were the lowest in July when it was the worst weather condition for cultivation of oriental melon. After then, the contents of folic acid and vitamin C increased when the rainfall had decreased in Aug. The contents of both vitamins were much high in placenta than peel and flesh. In conclusion, the meteorological condition of the summer season by torrential rains and lack of solar radiation influence water-soluble vitamin contents, especially folic acid contents of oriental melon as well as quality attributes such as hardness and sugar.