• Title/Summary/Keyword: wear particle size

Search Result 111, Processing Time 0.025 seconds

Microstructure and Properties of Ni-SiC Composite Coating Layers Formed using Nano-sized SiC Particles (SiC 나노입자를 이용하여 형성한 Ni-SiC 복합도금막의 미세구조 및 특성)

  • Lee, Hong-Kee;Son, Seong-Ho;Lee, Ho-Young;Jeon, Jun-Mi
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.63-69
    • /
    • 2007
  • Ni-SiC composite coating layers were formed using two kinds of SiC nano-particles by DC electrodeposition in a nickel sulfamate bath containing SiC particles. The effect of stirring rate and SiC particle type on the microstructure and properties of Ni-SiC composite coating layers were investigated. Results revealed that the trend of deposition rate is closely related to the codeposition of SiC and the deposition rate. or nickel, and the codeposition behavior of SiC can be explained by using hydrodynamic effect due to stirring. The average roughness and friction coefficient are closely related to the codeposition of SiC and SiC particle size. It was found that the Victors microhardness of the composite coating layers increased with increasing codeposition of SiC. The composite coating layers containing smaller SiC particle showed higher hardness. This can be explained by using the strengthening mechanism resulting from dispersion hardening. Anti-wear property of the composite coating layers formed using 130 nm-sized SiC nano-particles has been improved by 2,300% compared with pure electroplated-nickel layer.

A Comparative Analysis of Dust Particles Collected by Cleaning Equipments in Subway Tunnel (도시철도 터널 내 청소장치별 집진먼지 비교 분석)

  • Lee, Young-Kwon;Kim, Il-Hong;Jo, Byung-Ki;Kim, Man-Hwa;Park, Jong-Heon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1388-1398
    • /
    • 2011
  • Air pollution in subway tunnel is primarily caused from the wear of metallic materials. As undesirable substance, PM(Particulate Matter) can especially harm the health of passengers and workers as well as clog the main parts of rolling stock such as inverters. To improve the air quality in subway tunnel, SMRT(Seoul Metropolitan Rapid Transit Corporation) has developed anti-pollution devices such as Magnetic Dust Collector, Vacuum Cleaner For Rail Road and Particulate Removing Sprinkler Vehicle. Introducing these mechanical devices, this paper is mainly devoted to explaining the characteristics of collected dust according to the result of particle-size analysis and componential analysis.

  • PDF

The Effect of the Sn Amounts on the Microstructure of Rapidly Solidified Ag-Sn-In Alloys (급속응고한 Ag-Sn-In 미세조직에 미치는 Sn 함량 변화의 영향)

  • Cho, Dae-Hyoung;Kwon, Gi-Bong;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.26 no.2
    • /
    • pp.92-97
    • /
    • 2006
  • Contact material is widely used as electrical parts. Ag-Cd alloy has a good wear resistance and stable contact resistance. But the disadvantages of Ag-Cd alloy are coarse Cd oxides and harmful metal, Cd. To solve the disadvantages of that, Ag-Sn alloy that has stable and fine Sn oxide at high temperature has been developed. In order to optimize Sn amount that affects the formation of the oxide layer on the surface, we worked for the microstructures and properties of Ag-Sn material fabricated by rapid solidification process. The experimental procedure were melting using high frequency induction, melt spinning, and internal oxidation. We have shown that the optimized Sn amount for high hardness is 7.09 wt%Sn. Surface oxide layer forms when Sn amount is over 9.45 wt%. The size of Sn oxide is 20 nm.

Tribological and Optical Characteristics of Silica Coating for Anti-reflection Coating of Solar Cell (태양전지의 반사방지막을 위한 Silica 코팅의 트라이볼로지 및 광학적 특성 평가)

  • Kim, Hae-Jin;Kim, Dae-Eun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.2
    • /
    • pp.68-73
    • /
    • 2010
  • The interest in acquiring high efficiency solar cells has been steadily increasing due to various advantages such as low-cost installation, pollution free and everlasting energy generation. In order to raise the cell efficiency, there has been a lot of effort to develop effective anti-reflection coatings. In this work, the main objective was to investigate the effects of particle size and annealing temperature of silica anti-reflection coatings to maximize the cell efficiency as well as reliability. It was shown that the light transmittance could be increased by a few percent over a certain range of wavelength using the silica coating. Also, the tribological properties of the coating could be improved through the annealing process, which led to better reliability of the coating.

The Tribological Behaviors of Mesoporous $SiO_2$ Thin Film Formed by Sol-Gel and Self-Assembly Method (졸겔법과 자가조립법을 통해 제조된 메조포러스 $SiO_2$ 박막의 트라이볼로지 특성)

  • Lee, Young-Ze;Shin, Yun-Ha;Kim, Ji-Hoon;Kim, Ji-Man;Kim, Tae-Sung
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.298-300
    • /
    • 2007
  • Frictional characteristics of mesoporous $SiO_2$ thin films were evaluated with different pore sizes. The films were manufactured by sol-gel and self-assembly methods to have a porous structure. The pores on the surface may play as the outlet of wear particle and the storage of lubricant so that the surface interactions could be improved. The pores were exposed on the surface by chemical mechanical polishing (CMP) or plasma-etching after forming the porous films. The ball-on-disk tests with mesoporous $SiO_2$ thin films on glass specimen were conducted at sliding speed of 15 rpm and a load of 0.26 N. The results show considerable dependency of friction on pore size of mesoporous $SiO_2$ thin films. The friction coefficient decreased as increasing the pore size. CMP process was very useful to expose the pores on the surface.

Fabrication of $Al_2O_3/Al$ Composites by Replacement Reaction of Molten Metal Al (용융 Al의 치환반응에 의한 $Al_2O_3/Al$ 복합체의 제조)

  • 정두화;김용진;배원태
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.591-600
    • /
    • 1997
  • Al2O3/Al composites were produced by displacement reaction method, which was carried out by immersing the sintered silica preform, which was prepared from fused silica powder, in molten aluminum. Because the molten aluminum did not penetrate into the silica preform with higher than 20% of porosity when the displacement reaction was accomplished at 100$0^{\circ}C$ for 10 hours in air atmosphere, the optimum range of sintering temperature of silica preform was from 135$0^{\circ}C$ to 140$0^{\circ}C$. The microstructure of this Al2O3/Al composites showed three-dimentionally co-continuous alumina, which provides wear resistance and high stiffness, and aluminium which acts as a toughnening phase. The grain size of the alumina in composites did not change with the particle size of the silica preform. The exact shape of the preform was retained and a net-shaped composite was produced. The representative Al2O3/Al composite prepared in this study showed 3.30mg/㎤ of bulk density, 350-430 MPa of flexural strength, 7.0 MPa.m1/2 of fracture toughness, and good machinability.

  • PDF

Microstructure and Properties of HIPped P/M High Speed Steels (열간등압소결 된 고속도 공구강의 미세조직 및 기계적 특성)

  • Gang Li;Park, Woojin;S. Ahn
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.35-35
    • /
    • 1997
  • High$\cdot$speed steels (HSS) with a combination of good wear resistance and toughness are finding new, non-cutting applications such as rolls and rollers. In this paper, the research interests are focused on the microstructural evolution of a SMo-6W series high speed steel during HIPping and the effect of HIPping process parameters on its microstructure and properties. HIPping process variables includes; temperature, pressure and hold time. The microstructures of the HIPped HSS were examined by SEM, OM and X-ray diffraction whereas the properties measured were the relative density, hardness, and bend strength at room temperature. In HIPped materials, MC and M6C were the major carbides formed in a matrix of martensite. The effect of powder size on the microstructure and mechanical properties of HIPped materials was insignificant. However, HIPping temperature and hold time strongly affected the carbide size and distribution. The results show that at proper HIPping temperature and pressure conditions, the final products approach the full density ( > 99% RD). The particle boundaries were completely eliminated without an eminent microstructural coarsening. The bend strength was about 2.3 Gpa, which is superior to cast HSS. At excessive HIPping temperatures, rapid carbide coarsening occurred, thus deteriorating the mechanical properties of the P/M steels.

  • PDF

Physico-Chemical Characteristics of Sediment in Sedimentation Tank of Infiltration Trench and Filtration System (비점오염저감시설인 침투도랑과 여과형 시설내 침강지 퇴적의 물리화학적 특성 분석)

  • Lee, Soyoung;Lee, Eun-Ju;Kim, Chulmin;Maniquiz, M.C.;Son, Youngkyu;Khim, Jeehyeong;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.9 no.3
    • /
    • pp.35-42
    • /
    • 2007
  • The paved areas such as parking lots and roads are stormwater intensive landuses since they are impervious and have high pollutant mass emissions from vehicular activity. Vehicle emissions include different pollutants such as heavy metals, oil and grease, particulates from sources such as fuels, brake pad wear and tire wear. Especially, the released heavy metals can be easily absorbed on the surface area of small particulate materials because of its ionic strength. Therefore, by constructing the sedimental tank in structural BMPs as a pre-treatment facility, the particles and heavy metals both can be removed from the runoff at an instant. To understand the physico-chemical characteristics of sediments from sedimentation tank, one-year study at an infiltration trench and filtration system was conducted to quantify the metal mass absorbed on sediments with various particle sizes. The structural BMPs for this study are located in Yongin City, Kyunggido. The research results show that Cu, Zn and Pb are dominant metal compounds in the sediments. Also the metal concentrations are highest at the ranges of $425-850{\mu}m$ particle sizes. The results will provide the basic physico-chemical information of sediments to treat it as solid wastes and to determine the design criteria of sedimentation tank in structural BMPs.

  • PDF

Radon Blocking Effect of Mask used in Everyday Life (일상생활에서 사용하는 마스크의 라돈 차단 효과)

  • Cheon, Se-Hyeon;Lee, Yong-Ki;Ahn, Sung-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.313-318
    • /
    • 2020
  • Since radon is an inert gas and is a monoatomic molecule, the size of one particle represents the size of an atom, which means that it has a radius of approximately 1 to 100 nm. Therefore, if the mask has a radius smaller than the size of general fine dust and ultra fine dust, but it is possible to block the inhalation of radon more than a certain amount, it is considered that the exposure through the inhalation of radon can be reduced through normal indoor wear. Accordingly, we would like to find out the radon blocking effect of a mask worn in everyday life. Looking at the reduction rate of radon for each mask, cotton masks decreased by 33.45%, medical masks by 33.50%, KF 80 masks by 35.12%, and KF 94 masks by 37.72%. It was found that the radon blocking effect of the cotton and medical masks was somewhat inferior to that of the KF mask, but the difference was not so great that the introduction of radon into the air could be blocked to a certain level by wearing a mask.

Study on Erosion of Carbon Fiber Reinforced Plastic Composite (탄소섬유강화복합재료의 마식에 관한 연구)

  • Kim, Am-Kee;Kim, Il-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.291-297
    • /
    • 2008
  • The solid particle erosion behaviour of unidirectional carbon fiber reinforced plastic (CFRP) composites was investigated. The erosive wear of these composites was evaluated at different impingement angles ($30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$), different impact velocities (40, 55, 60, 70m/s) and at three different fiber orientations ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$). The erodent was SiC sand with the size $50-100{\mu}m$ of irregula. shapes. The result showed ductile erosion behaviour with maximum erosion rate at $30^{\circ}$ impingement angle. The fiber orientations had a significant influence on erosion. The erosion rate was strongly dependent on impact velocity which followed power law $E{\propto}\;V^n$. Based on impact velocity (V), impact angle (${\alpha}$) and fiber orientation angle (${\beta}$), a method was proposed to predict the erosion rate of unidirectional fiber reinforced composites.