• Title/Summary/Keyword: wax precipitation temperature

Search Result 4, Processing Time 0.015 seconds

Study on Paraffin Wax Precipitation using Model Oils (모델오일을 이용한 파라핀 왁스의 침전 연구)

  • Oh, Kyeong-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.495-503
    • /
    • 2017
  • Wax components can be precipitated when surrounding temperature decreases below wax precipitation temperature (WAT). WAT as well as pour point are important characteristics to evaluate the behavior of waxy oils. In this study, qualitative and quantitative evaluations of waxes in waxy model oils were presented after determining WAT and pour point. In case of anhydrous waxy model oils, ASTM D2500 may be most useful to determine WAT because of the transparent nature of model oils. With same apparatus, ASTM D97 is also applicable to determine the pour point of waxy oils in a serial determination. In case of emulsified model oils, however, it is difficult to measure WAT because of its opaque nature. This study employed FTIR spectroscopy to determine wax precipitation temperature and discussed the effect of emulsion state regarding the values of WAT. Further study would be needed to conclude the effect of water contents to WAT values in case of emulsified waxy oil.

Wax Appearance Temperature Measurement of Opaque Oil for Flow Assurance in Subsea Petroleum Production System (해저 석유 생산시스템 내 유동안정성 확보를 위한 불투명 오일의 왁스생성온도 측정법)

  • Lim, Jong-Se;Back, Seung-Young;Kang, Pan-Sang;Yul, Seung-Ryul;Kim, Hyo-Sang;Park, Ji-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.185-194
    • /
    • 2012
  • Deepwater oil is becoming more attractive because most onshore and shallow water oil is developing or developed. With the on-going trend to deepwater oil developments, flow assurance problems which prevent oil flow from reservoir to processing facilities are becoming an issue because deposited material can be occurred in case oil is exposed to very different environment from reservoir. Wax deposition which is one of flow assurance problems can be a major technical and economic issue because it is very sensitive to temperature. In order to predict and mitigate wax problems, the precise measurement of wax appearance temperature (WAT) which is the starting temperature of wax precipitation is very important. Various methods have been suggested for WAT measurement of opaque oil because there is no standard method for opaque oil. In this study, the WAT of opaque oil samples was measured using viscosity measurement method, differential scanning calorimetry, filter plugging method, and pressurized filter plugging method. Wax deposition test and high temperature gas chromatography analysis were applied to verify measured WAT. As a result of study, the WAT of opaque oils was successfully measured and verified. If WAT measurement methods of opaque oil related to oil characteristics is systematized using the results of this study, it can be a valuable tool for WAT measurement of opaque oil and flow assurance related to wax deposition.

Characteristic evaluation of waxy oil behavior using vane rheometer (베인 레오미터를 이용한 왁스오일의 특성 연구)

  • Oh, Kyeong-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.497-504
    • /
    • 2015
  • Apart from hydrates, asphaltenes, and inorganic minerals, paraffinic waxes are also very important in flow assurance area. Evaluation of wax gel behavior has been important as off-shore oil recovery becomes more popular in oil production. Restart after either planned or emergency shutdown requires pump operation in high pressure since a waxy oil forms troublesome gel. In this paper, vane method is introduced to determine wax gel strength by determining yield stress. Prediction of gel strength are discussed in qualitative and quantitative manners.

Interrelationship between Paleovegetation in Southern and Central California and Northeast Pacific Atmospheric and Oceanographic Processes over the Last ~30 kyr (과거 3만년 동안 캘리포니아 남부와 중부지역의 고식생 변화와 북동태평양 대기 및 해양순환 변동과의 연관성 연구)

  • Suh, Yeon Jee
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.159-168
    • /
    • 2019
  • Understanding the interaction between climate and the water cycle is critical especially in a drought sensitive region such as California. This study explored hydrologic changes in central and southern California in relation to the glacial-interglacial climate cycles over the last 30 thousand years. To do this, we reconstructed paleovegetation using plant wax carbon isotopic compositions (${\delta}^{13}C$) preserved in marine sediment cores retrieved from the central California continental shelf (ODP Site 1018) and Santa Barbara Basin (ODP Site 893A). The results were then compared to the existing sea surface temperature (SST) and pollen records from the same cores to understand terrestrial hydrology in relation to oceanographic processes. The Last Glacial was generally dry both in central and southern California, indicated by grassland expansion, confirming the previously suggested notion that the westerly storm track that supplies the majority of the precipitation in California may not have moved southward during the glacial period. Southern California was drier than central California during the Last Glacial Maximum (LGM). This drying trend may have been associated with the weakening of the California Current and northerly winds leading to the early increase in SST in southern California and decline in both offshore and coastal upwelling. The climate was wetter during the Holocene in both regions compared to the glacial period and forest coverage increased accordingly. We attribute this wetter condition to the precipitation contribution increase from the tropics. Overall, we found a clear synchronicity between the terrestrial and marine environment which showed that the terrestrial vegetation composition in California is greatly affected by not only the global climate states but also regional oceanographic and atmospheric conditions that regulate the timing and amount of precipitation over California.